
1

MOVEC: Parametric Runtime
Verification of C Programs

Zhe Chen / 陈哲

Nanjing University of Aeronautics and Astronautics
南京航空航天大学

Published in TACAS 2016

Zhe Chen - Nanjing University of Aeronautics and Astronautics2

Outline
Introduction

A Simple Example

The Language for Monitors

Implementation of Monitoring4

1

2

3

Experimental Evaluation5

Conclusion6

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Introduction
• Runtime verification tools

– Monitor program executions at runtime, to detect and
possibly react to property violations.

– Use automated program instrumentation for monitor
synthesis and weaving.

– Based on Aspect-Oriented Programming (AOP), modular
implementation of crosscutting concerns.

– Implemented as specification transformers, translating
high-level monitor specifications into aspects.

• Java examples:
– JavaMOP [Rosu and Chen et al.]
– Tracematches [Avgustinov et al.]
– Based on AspectJ

3

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Introduction
• Apply runtime verification to C programs?

– A large number of C applications, e.g.,
embedded software, avionics systems.

– They usually require high dependability.
• However, how?

– Need AOP tool support for C programs.
– Based on AspectC++? AspectC? ACC?
– Sadly, we lack AOP tool support.

4

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Our Contribution
• Design a new general purpose and expressive

language for defining monitors, as an extension
to the C language.

• Propose a new instrumentation algorithm for the
new language.

• MOVEC: an integrated tool implementation of
the weaver.
– AOP support
– Parametric runtime verification
– More robust, reliable and efficient

5

Zhe Chen - Nanjing University of Aeronautics and Astronautics

The MOVEC Compiler
• MOVEC: Runtime Monitoring, Verification and

Control of C programs
– An aspect-oriented programming language, inspired

by related compilers like AspectJ, AspectC++ and
ACC (AspeCt-oriented C)

– A monitoring-oriented programming language,
inspired by JavaMOP, TraceMatches etc.

– An automated generator of runtime verifiers and
controllers

• The long-term research objective is an industrial quality
tool for monitoring C programs, especially targeting
embedded software such as avionics systems.

6

Zhe Chen - Nanjing University of Aeronautics and Astronautics

The MOVEC Compiler

7

A Source-to-Source Transformer

Zhe Chen - Nanjing University of Aeronautics and Astronautics8

Outline
Introduction

A Simple Example

The Language for Monitors

Implementation of Monitoring4

1

2

3

Experimental Evaluation5

Conclusion6

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Tool Demo
• C source program

– malloc
– free

9

Are all allocated
memory blocks freed

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Tool Demo
• Monitor definition for memory leakage

10

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Tool Demo
• Run MOVEC

– Created 10 monitor instances.
– Only 3 monitors reached matching states, and

invoked the handler.

11

Generate files: malloc.c
monitor.h hashmap.h

Zhe Chen - Nanjing University of Aeronautics and Astronautics12

Outline
Introduction

A Simple Example

The Language for Monitors

Implementation of Monitoring4

1

2

3

Experimental Evaluation5

Conclusion6

Zhe Chen - Nanjing University of Aeronautics and Astronautics

The Language Model
• A monitor contains:

– Join points
– Pointcuts
– Actions
– Properties
– Handlers

13

AOP

Parametric runtime
verification

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Join Points
• A join point is a point in the execution of a

program, such as
– Call: function calls via function names
– Callp: function calls via pointers
– Execution: function executions
– Set: setting the value of a variable
– Get: getting the value of a variable

• Match join points using match expressions
and pointcuts.

14

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Join Points

15

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Match Expressions
• Match expressions describe a set of

statically known program objects related to
join points, such as identifiers, variable
declarations, parameter lists and function
signatures in programs.
– Literal, e.g., ‘foo’, ‘int foo’, ‘char func(int foo)’
– Regular, with ‘%’ and ‘...’ as wildcard

characters, e.g., ‘% func%(..., int x, ...)’

16

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Pointcuts
• A pointcut is an expression that matches a

set of join points scattered in the execution
of a program.
– primitive pointcuts
– composite pointcuts
– named pointcuts

17

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Primitive Pointcuts
• Primitive pointcuts contain four classes.
• 1. Core pointcut functions

– call(function-signature)
– callp(function-signature)
– execution(function-signature)
– set(variable-declaration)
– get(variable-declaration)

18

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Primitive Pointcuts
• 2. Naming pointcut functions

– returning(identifier)
• 3. Dynamic scope pointcut functions

– inexec(function-signature)
– condition(boolean-expression)

• 4. Static scope pointcut functions
– infunc(function-signature)
– intype(identifier)
– infile(identifier)

19

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Composite Pointcuts
• A composite pointcut is a primitive

pointcut, or a logical composition of
composite pointcuts with the following
operators: && (and), || (or), ! (not), and ().

• Examples:
call(int foo(char, int x)) && returning(ret);
execution(void bar(% p)) && inexec(% foo(...));
call(void func(char c, ...)) && infunc(int main(...));

20

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Named Pointcuts
• A named pointcut assigns a name to a

pointcut to reuse pointcut declarations.
• Examples:
pointcut npc1 = call(int foo(char, int x)) && returning(ret);
pointcut npc2 = execution(void bar(% p)) && inexec(%

foo(...));
pointcut npc3 = call(void func(char c, ...)) && infunc(int

main(...));
pointcut npca = npc1 || (npc2 && infile(a.c));
pointcut npcb = (npc2 || npc3) && infile(main.c);

21

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Actions
• We can associate an action to a pointcut,

i.e., a code fragment.
– Dynamic actions
– Static actions

• The action code will be automatically
executed when a matched join point is
reached in an execution.

22

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Actions
• Dynamic actions are executed at runtime,

before, around (instead of), or after the matched
join points.

action before execution(void login(...)) {
printf("logging in.\n");

}
• Static actions are executed at compile-time. to

extend the source code.
action extend infunc(% foo%(...)) {

printf(“leaving function foo.\n");
}

23

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Properties and Handlers
• A property specifies the desired or undesired set

of sequences of matched join points in the
execution of a program.
– Finite State Machines (FSM)
– Extended Regular Expressions (ERE)
– Linear Temporal Logic (LTL)

• A handler can be automatically executed when
the property is matched or violated by an
execution of the program.
– match, fail

24

Zhe Chen - Nanjing University of Aeronautics and Astronautics25

Outline
Introduction

A Simple Example

The Language for Monitors

Implementation of Monitoring4

1

2

3

Experimental Evaluation5

Conclusion6

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Data Structures
• During runtime monitoring, a program may

create thousands of monitors.
• Developing an efficient algorithm for

indexing these monitors.
• A new data structure: hierarchical

hashmap forests
– Each monitor is added into a hierarchical

hashmap wrt. its parameter instance.
– All monitors can be efficiently retrieved.

26

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Hierarchical Hashmap
• A list of hierarchical hashmap forests

27

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Hierarchical Hashmap
• A hierarchical hashmap corresponds to a

set of parameters, e.g., {a,b}.
• Each level corresponds to a parameter.

28

Zhe Chen - Nanjing University of Aeronautics and Astronautics29

Outline
Introduction

A Simple Example

The Language for Monitors

Implementation of Monitoring4

1

2

3

Experimental Evaluation5

Conclusion6

Zhe Chen - Nanjing University of Aeronautics and Astronautics

MOVEC vs. JavaMOP
• Benchmark: four projects

– Two equivalent versions, in C and Java, resp.
– Two versions are literally similar.

30

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Results
• Correctness

– MOVEC correctly invoked all handlers.
– JavaMOP is incorrect in 3 projects, esp. when

the number of monitors is large.
• Overhead

– Generally comparable.
– JavaMOP outperforms MOVEC when the

number of monitors is large.

31

Zhe Chen - Nanjing University of Aeronautics and Astronautics32

Outline
Introduction

A Simple Example

The Language for Monitors

Implementation of Monitoring4

1

2

3

Experimental Evaluation5

Conclusion6

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Conclusion & Future Work
Download MOVEC and examples/benchmarks:
http://svlab.nuaa.edu.cn/zchen/projects/movec

• We are open for suggestions on how to further optimize
its features, language syntax and semantics.

Current and Future Work:
• Fine-tuning parts of the language design, e.g., adding

more pointcuts and formalisms.
• Optimizing data structures and building the next

generation compiler, to improve the quality.
• IDE extensions and documentation.
• Empirically study the practical value of MOVEC.

33

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Our Related Work
Runtime Verification and Theory
• Zhe Chen, Zhemin Wang, Yunlong Zhu, Hongwei Xi,

Zhibin Yang. Parametric Runtime Verification of C
Programs. In TACAS 2016, LNCS, vol. 9636, pp. 299-
315. Springer, 2016.

• Zhe Chen, Ou Wei, Zhiqiu Huang, Hongwei Xi. Formal
Semantics of Runtime Monitoring, Verification,
Enforcement and Control. In TASE 2015, pp. 63-70.
IEEE Computer Society, 2015.

• Zhe Chen. Control Systems on Automata and
Grammars. The Computer Journal, vol. 58(1), pp. 75-94.
Oxford University Press, 2015.

34

Zhe Chen - Nanjing University of Aeronautics and Astronautics

Our Related Work
Model Checking
• Zhe Chen, Yi Gu, Zhiqiu Huang etc. Model Checking Aircraft

Controller Software: A Case Study. Software-Practice &
Experience, vol. 45(7), pp. 989-1017. Wiley, 2015.

• Zhe Chen, Daqiang Zhang and Yinxue Ma. Modeling and
Analyzing the Convergence Property of the BGP Routing
Protocol in SPIN. Telecommunication Systems, vol. 58(3), pp.
205-217. Springer, 2015.

• Zhe Chen, Daqiang Zhang, Rongbo Zhu etc. A Review of
Automated Formal Verification of Ad Hoc Routing Protocols
for Wireless Sensor Networks. Sensor Letters, vol. 11(5), pp.
752-764. American Scientific Publishers, 2013.

35

36

