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This is an abstract interpretation
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Scientific research
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Scientific research
• In Mathematics/Physics:  

 

trend towards unification and synthesis through 
universal principles

• In Computer science:

trend towards dispersion and parcellation through a 
ever-growing collection of local ad-hoc techniques for 
specific applications 

An exponential process, will stop!

4



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot5

Steganography

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type 
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination 
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract 
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation 
logic

Code
contracts

Code 
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers

Example: reasoning on computational structures



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot6

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type 
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination 
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract 
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation 
logic

Code
contracts

Code 
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers

Example: reasoning on computational structures



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot7

Abstract interpretation

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type 
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination 
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract 
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation 
logic

Code
contracts

Code 
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers

Example: reasoning on computational structures



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot

Intuition 1
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Concrete
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Abstraction 1
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Abstraction 2
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Concretization 2
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Concretization 1
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Abstract interpretations
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Abstract interpretations

15

…
…

𝛼1

𝛼2

𝛾1

𝛾2

𝛼1;𝛼2

𝛾2;𝛾1

𝛼1;𝛼2;𝛾2;𝛾1



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot

Intuition 2

16
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Interval abstraction
• Example: interval abstraction (also called box 

abstraction)

18

Set of points Interval abstraction 
[mx,Mx]x[my,My]
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Intuition 3

19
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A C program and one of its executions

20

#include <stdio.h> 
int main() 
{ 
          int x, y; 
          printf("Enter two integers: "); 
          scanf("%d %d",&x, &y); 
/* 1: */  while ((x != 6) || ( y != 0)) { 
             printf("x = %d, y = %d\n",x,y); 
/* 2: */     x = x + 3; 
/* 3: */     if (x > 10) x = -x; 
/* 4: */     y = y - 2; 
/* 5: */     if (y < -5) y = -y; 
          } 
/* 6: */  printf("x = %d, y = %d\n",x,y); 
}

Enter two integers: x = 0, y = 0 
x = 3, y = -2 
x = 6, y = -4 
x = 9, y = 6 
x = -12, y = 4 
x = -9, y = 2 
x = -6, y = 0 
x = -3, y = -2 
x = 0, y = -4 
x = 3, y = 6 
x = 6, y = 4 
x = 9, y = 2 
x = -12, y = 0 
x = -9, y = -2 
x = -6, y = -4 
x = -3, y = 6 
x = 0, y = 4 
x = 3, y = 2 
x = 6, y = 0 
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Graphical representation of the execution (I)
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Graphical representation of the execution (2)

22

x = 6, y = 0

x = 0, y = 0

x, y

t0 18
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Formalize what it means to run a program

trajectory

state

time

Semantics
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Formalize what you are interested to know about program behaviors

Properties (Collecting semantics)
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!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

Formalize what you are interested to prove about program behaviors

Specification
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!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

Abstract away all information on program behaviors irrelevant to the proof

Abstraction
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!"##$%&'(
)*+,'-)"*$'#
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The proof is fully automatic

Verification
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!"#$%&&'()*"('

+",,%$-')
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2$,.#/1.%"()"3).4').#/0'1."#%',

Never forget any possible case so the abstract proof is correct in the concrete

Soundness
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Try a few cases

Unsound methods: testing
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Simulate the beginning of all executions (so called bounded model-checking)

Bounded model-checking

Forbidden zone

Possible
trajectories

Unsound methods: bounded model checking
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Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Unsound methods: soundiness
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!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#)"#)3/-,')/-/#4)5

6-/#4)777

When abstract proofs may fail while concrete proofs would succeed

By soundness an alarm must be raised for this over-approximation!

Alarms
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The abstract alarm may correspond to a concrete error

True alarm
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!"#$%&&'())*"('
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The abstract alarm may correspond to no concrete error (false negative)

False alarm
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What to do in presence of false alarms
• False alarms are ultimately unavoidable (Gödel's 

incompleteness)

• Consider finite cases or decidable cases only (model-
checking, does not scale)

• Ask for human help by providing information on the 
program behavior (theorem provers, SMT solvers), 
program specific and labor costly

• Have specialists refine the abstract interpretation (e.g. 
Astrée, http://www.absint.com/astree/index.htm), 
shared cost

35
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F ( x1, . . . , xn⌦) � ⇥( F1(x1), . . . ,
Fn(xn⌦) and  r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥( [0, 100], odd⌦) =  [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics
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The very first static analysis

37
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Brahmagupta

38
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The rule of signs by Brahmagupta (628)
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• The abstraction is that you do not (always) 
need to known the absolute value of the 
arguments to know the sign of the result;

• Sometimes imprecise (don't know the sign of 
the sum of a positive and a negative)

• Useful in practice (if you know what to do 
when you don't know the sign)

• e.g. in compilation: do not optimize (a 
division by 2 by a shift when positive)

The rule of signs by Brahmagupta (628)



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot41

• The abstraction is that you do not (always) 
need to known the absolute value of the 
arguments to know the sign of the result;

• Sometimes imprecise (don't know the sign of 
the sum of a positive and a negative)

• Useful in practice (if you know what to do 
when you don't know the sign)

• e.g. in compilation: do not optimize (a 
division by 2 by a shift when positive)

The rule of signs by Brahmagupta (628)



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot42
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• The abstraction is that you do not (always) 
need to known the absolute value of the 
arguments to know the sign of the result;

• Sometimes imprecise (don't know the sign of 
the sum of a positive and a negative)

• Useful in practice (if you know what to do 
when you don't know the sign)

• e.g. in compilation: do not optimize (a 
division by 2 into a shift when positive(*))

(*) Unless processor uses 2's complement and can shift the sign.

The rule of signs by Brahmagupta (628)
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The rule of signs by Brahmagupta (628)



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot45

The rule of signs by Brahmagupta (628)
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wrong

The rule of signs by Brahmagupta (628)
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The rule of signs by Michel Sintzoff (1972)
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The rule of signs by Michel Sintzoff (1972)
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wrong
= 0∈pos x -1∈neg
= 0∉neg

The rule of signs by Michel Sintzoff (1972)
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The rule of signs Cousot & Cousot (1979)

50

α

∅

{0} {1}{-1}

{-1,0}

{-1,0,1}

{-1,1} {0,1}

-

⟘

⟙

0

+

𝛾
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The rule of signs Cousot & Cousot (1979)

51

α

∅

{0} {1}{-1}

{-1,0}
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0

+

𝛾

inclusion/
implication inclusion/

implication

Galois
connection
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The rule of signs Cousot & Cousot (1979)

52

α

∅

{0} {1}{-1}

{-1,0}

{-1,0,1}

{-1,1} {0,1}

-

⟘

⟙

0

+

𝛾

+ + +        =        +
𝛾 𝛾
{0,1} + {0,1} = {0,1,2[2]} = {0,1}

inclusion/
implication inclusion/

implication

Galois
connection

calculational
design method α
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Application of abstract 
interpretation to static 

analysis

53
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All computer scientists have experienced bugs

• Checking the presence of bugs by debugging is great

• Proving their absence by static analysis is even better!

54

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J✁✁✁— 3 — []¨—✄✄✄I ľ P. Cousot

Ariane 5.01 failure      Patriot failure     Mars orbiter loss          Heartbleed
      (overflow)         (float rounding)          (unit error)          (buffer overrun)

unsigned int payload = 18; /* Sequence number + random bytes */
unsigned int padding = 16; /* Use minimum padding */

/* Check if padding is too long, payload and padding
* must not exceed 2^14 - 3 = 16381 bytes in total.
*/

OPENSSL_assert(payload + padding <= 16381);

/* Create HeartBeat message, we just use a sequence number
 * as payload to distuingish different messages and add
 * some random stuff.
 *  - Message Type, 1 byte
 *  - Payload Length, 2 bytes (unsigned int)
 *  - Payload, the sequence number (2 bytes uint)
 *  - Payload, random bytes (16 bytes uint)
 *  - Padding
 */

buf = OPENSSL_malloc(1 + 2 + payload + padding);
p = buf;
/* Message Type */
*p++ = TLS1_HB_REQUEST;
/* Payload length (18 bytes here) */
s2n(payload, p);
/* Sequence number */
s2n(s->tlsext_hb_seq, p);
/* 16 random bytes */
RAND_pseudo_bytes(p, 16);
p += 16;
/* Random padding */
RAND_pseudo_bytes(p, padding);

ret = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);
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Static analysis
• Check program properties (automatically, using the 

program text only, without running the program)

• Difficulties:

• Undecidability / complexity:

• Precision 

• Scalability

• Soundness (correctness)

• Induction: widening/narrowing

55
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Fixpoint

56

Fixpoint equationfy > 0g  hypothesis
x = y
fI(x; y)g  loop invariant
while (x > 0) {

x = x - 1;
}

Floyd-Naur-Hoare verification conditions:
(y > 0 ^ x = y) =) I(x; y) initialisation

(I(x; y) ^ x > 0 ^ x0 = x` 1) =) I(x0; y) iteration

Equivalent fixpoint equation:

I(x; y) = x > 0 ^ (x = y _ I(x+ 1; y)) (i.e. I = F (I) (5))

(5) We look for the most precise invariant I, implying all others, that is lfp=) F .

CSE, SNU, Seoul, 09/30/2008 J�� � – 52 –? []¨ –⇤ ⇤⇤I © P. Cousot
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Iterates

57

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot
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Iterates

58
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CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot
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Iterates

59

Accelerated Iterates I = lim
n!1

F

n

(false)
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(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
0

y

x

I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
1

y

x

I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot
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Iterates
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Convergence acceleration: widening
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Fixed point
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Octagons
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Industrial results obtained with Astrée
– Automatic proofs of absence of runtime
errors in Electric Flight Control Soft-
ware:
– A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb
(Nov. 2003)
– A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
no false alarm, World premières !

– Automatic proofs of absence of runtime
errors in the ATV software (2):
– C version of the automatic docking software: 102.000 lines of
C, 23s on a Quad-Core AMD Opteronó processor, 16 Gb (Apr.
2008)

(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.

Airbus, 12/04/2008 J�� � – 27 –? []¨ –⇤ ⇤⇤I © P. Cousot

Industrialisation: Development in cooperation with Airbus France
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Application of abstract 
interpretation to 

program proof methods

65
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Maximal execution trace

66

#include <stdio.h> 
int main() { 
          int x,y; 
          printf("Enter an integer: "); 
          scanf("%d",&x); y = x; 
/* 1: */  while (x != 0) { 
             printf("x = %d, y = %d\n",x,y); 
/* 2: */     x = x - 1; 
/* 3: */     y = y + 2; 
          } 
/* 4: */  printf("x = %d, y = %d\n",x,y); } 

⟨1:,3,3,3⟩ ⟶ ⟨2:,3,3,3⟩ ⟶ ⟨3:,3,2,3⟩ ⟶ ⟨1:,3,2,5⟩ ⟶ ⟨2:,3,2,5⟩ 
⟶ ⟨3:,3,1,5⟩ ⟶ ⟨1:,3,1,7⟩ ⟶ ⟨2:,3,1,7⟩ ⟶ ⟨3:,3,0,7⟩ ⟶ 
⟨1:,3,0,9⟩ ⟶ ⟨6:,3,0,9⟩

Enter an integer: 3 
x = 3, y = 3 
x = 2, y = 5 
x = 1, y = 7 
x = 0, y = 9

Enter an integer: -1 
x = -1, y = -1 
x = -2, y = 1 
x = -3, y = 3 
x = -4, y = 5 
… 
x = -738245, y = 1476487 
…
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Maximal execution trace

67

#include <stdio.h> 
int main() { 
          int x,y; 
          printf("Enter an integer: "); 
          scanf("%d",&x); y = x; 
/* 1: */  while (x != 0) { 
             printf("x = %d, y = %d\n",x,y); 
/* 2: */     x = x - 1; 
/* 3: */     y = y + 2; 
          } 
/* 4: */  printf("x = %d, y = %d\n",x,y); } 

⟨1:,3,3,3⟩ ⟶ ⟨2:,3,3,3⟩ ⟶ ⟨3:,3,2,3⟩ ⟶ ⟨1:,3,2,5⟩ ⟶ ⟨2:,3,2,5⟩ 
⟶ ⟨3:,3,1,5⟩ ⟶ ⟨1:,3,1,7⟩ ⟶ ⟨2:,3,1,7⟩ ⟶ ⟨3:,3,0,7⟩ ⟶ 
⟨1:,3,0,9⟩ ⟶ ⟨6:,3,0,9⟩

Enter an integer: 3 
x = 3, y = 3 
x = 2, y = 5 
x = 1, y = 7 
x = 0, y = 9

Enter an integer: -1 
x = -1, y = -1 
x = -2, y = 1 
x = -3, y = 3 
x = -4, y = 5 
… 
x = -738245, y = 1476487

value y of y  
value 𝑥 of x  

initial value 𝑥0 of x 
control point

state

transition ∈ trans ⟦P⟧initial state ∈ init ⟦P⟧

memory
state
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Maximal trace semantics
• The trace semantics of a program is the set of all 

possible maximal finite or infinite execution traces for 
that program 

• The trace semantics of a programing language maps 
programs to their trace semantics

68
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Inductive definition
• Partial traces:

• A trace with one initial state is a partial trace

• A partial trace extended by a transition is a partial 
trace

• Maximal traces:

• Finite traces with no extension by a transition

• Infinite traces which prefixes are all partial traces

69
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Fixpoint partial trace semantics
• initial states of program P: init ⟦P⟧ 

• transitions of programs P: trans ⟦P⟧ 

• Ft⟦P⟧𝑋 = { s | s ∈ init ⟦P⟧ } ∪  
                { σss' | σs ∈ 𝑋 ∧ ss'∈ trans ⟦P⟧ } 

• St⟦P⟧ = lfp⊆ Ft⟦P⟧

70



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot

Invariance abstraction
• Collect at each control point the possible values of 

variables when execution reaches that control point

• α(𝑋)c = {m | ∃σ,σ'. σ⟨c,m⟩σ' ∈ 𝑋} 

• Invariance semantics:  Si⟦P⟧ = α(St⟦P⟧)

71
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Invariance abstraction
• Collect at each control point the possible values of 

variables when execution reaches that control point

• Si⟦P⟧ = α(St⟦P⟧)c = {m | ∃σ,σ'. σ⟨c,m⟩σ' ∈ St⟦P⟧}

72

#include <stdio.h> 
int main() { 
          int x,y; 
          printf("Enter an integer: "); 
          scanf("%d",&x); y = x; 
/* 1: */  while (x != 0) { 
             printf("x = %d, y = %d\n",x,y); 
/* 2: */     x = x - 1; 
/* 3: */     y = y + 2; 
          } 
/* 4: */  printf("x = %d, y = %d\n",x,y); } 

{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 - 2𝑥}
{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 - 2𝑥}
{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 - 2𝑥 - 2}
{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 ∧ 𝑥 = 0}
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Calculations design of the verification conditions

• α(Ft⟦P⟧𝑋)  
= 𝛌 c.{m | ∃σ,σ'. σ⟨c,m⟩σ' ∈ 𝑋} 
= … 
= Fi⟦P⟧(α(𝑋)) 
where Fi⟦P⟧ are the Turing/Floyd/Naur/Hoare 

verification conditions

• It follows that Si⟦P⟧ = lfp⊆ Fi⟦P⟧ 

• The proof method is then by fixpoint induction (Tarski 
1955)

73

.
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Application to the 
semantics 

of programming languages

74
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General idea
• All known semantics are abstractions of a most 

precise semantics
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Abstraction to denotational semantics
• The maximal trace semantics Sm⟦P⟧ (maximal finite 

and infinite execution traces

• Denotational semantics abstraction:

• Sd⟦P⟧ = α(Sm⟦P⟧) 

• α(𝑋) = 𝛌 s.{s' | ∃σ. sσs' ∈ 𝑋} ∪  
                {⟘ | ∃σ. sσ… ∈ 𝑋}  
 
i.e. a map of initial states to the set of final states 
plus ⟘  in case of non-termination  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Hierarchy of abstractions

77
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Figure 5. The hierarchy of semantics
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idem for Prolog

• all semantics are abstractions of Sd⟦P⟧

78

(where the composition of partial correctness abstractions with –C leads to
non-computable semantics but are useful when reasoning on program imple-
mentations).

11.4 The Hierarchy of Abstractions and Semantics

The combination of the instantiation abstraction of Sec. 11.2.3 and the in-
formation abstraction of Sec. 11.3.8 yields to the two-dimensional hierarchy
of abstractions of Fig. 1. Missing in the picture is the partial correctness third
abstraction dimension of Sec. 11.1.2.
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Fig. 1. The hierarchy of maximal abstractions

By applying this hierarchy of abstractions to the most general maximal deriva-
tion semantics SdJP K, we get the hierarchy of maximal semantics given in Fig.
2. Classical examples in the hierarchy of semantics is given in Fig. 3, some of
which are detailed below.

11.4.1 The s-semantics

The s-semantics SsJP K provides computed answers [46]:

SsJP K , –ds(SdJP K)
25
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Conclusion

79
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Abstract interpretation
• A well-developed theory, still in progress

• Active research e.g. 

• abstract domains to handle e.g. complex data 
structures 

• abstraction of parallelism with weak memory 
models

• applications to biology, …

• Industrial-quality static analyzers

80
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Industrialisation: Astrée
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Industrialisation: Astrée

82
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Many other static analyzers
• Julia (Java) http://www.juliasoft.com

• Ikos, NASA https://ti.arc.nasa.gov/opensource/ikos/

• Clousot for code contract, Microsoft, https://
github.com/Microsoft/CodeContracts 

• Infer (Facebook) http://fbinfer.com 

• Zoncolan (Facebook)

• Google

• …
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• Users of Astrée:

•Why not all software developers use 
static analysis tools?

84

…

Static analysis for software development



Abstract interpretation,  SAVE 16, Changsha, 10 December 2016                                                                                                                                                                                         © P. Cousot

Irresponsibility
• Computer engineering is the only technology where 

developers are not responsible for their errors, even 
the trivial ones:

85

Warranty
Excerpt from Microsoft software licence:

DISCLAIMER OF WARRANTIES. . . . MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FIT-
NESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. . . .

You get nothing for your money either!

Minta Martin Lecture, MIT, May 13th, 2005 — 25 — ľ P. Cousot

Traditional software validation methods

– The law cannot enforce more than “best practice”
– Manual software validation methods (code reviews, sim-
ulations, tests, etc.) do not scale up
– The capacity of programmers/computer scientists re-
mains essentially the same
– The size of software teams cannot grow significantly
without severe efficiency losses

Minta Martin Lecture, MIT, May 13th, 2005 — 26 — ľ P. Cousot

Mathematics and computers can help

– Software behavior can be mathematically formalized
! semantics
– Computers can perform semantics-based program analy-
ses to realize verification ! static analysis
- but computers are finite so there are intrinsic lim-
itations ! undecidability, complexity
- which can only be handled by semantics approxi-
mations ! abstract interpretation

Minta Martin Lecture, MIT, May 13th, 2005 — 27 — ľ P. Cousot

Abstract interpretation
(1) very informally

Minta Martin Lecture, MIT, May 13th, 2005 — 28 — ľ P. Cousot
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The future
• Safety and security does matter to the general public

• Computer scientists will ultimately be held responsible 
for there errors

• At least the automatically discoverable ones

• Since this is now part of the state of the art

• Automatic static analysis, verification, etc has a brilliant 
future.
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``Finding people who really know static analysis 
is very hard, you should tell your students that if 
they want a great job in a Silicon Valley company 
they should study abstract interpretation not 
JavaScript. Feel free to quote me on that ;-)’’

Francesco Logozzo, designer of the Zoncolan static 
analyzer at Facebook wrote me on 09/12/2016:
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The End, Thank You
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