
Patrick Cousot
pco9usot1@cs.n@yu.e1du cs.nyu.edu/~pcousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

SAVE 2016,
Changsha, 10 December 2016

Abstract Interpretation

1

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

This is an abstract interpretation

2

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Scientific research

3

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Scientific research
• In Mathematics/Physics:  

 

trend towards unification and synthesis through
universal principles

• In Computer science:

trend towards dispersion and parcellation through a
ever-growing collection of local ad-hoc techniques for
specific applications

An exponential process, will stop!

4

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot5

Steganography

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers

Example: reasoning on computational structures

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot6

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers

Example: reasoning on computational structures

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot7

Abstract interpretation

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers

Example: reasoning on computational structures

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Intuition 1

8

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Concrete

9

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Abstraction 1

10

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Abstraction 2

11

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Concretization 2

12

…

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Concretization 1

13

…

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Abstract interpretations

14

…
…

𝛼1

𝛾1

𝛼2

𝛾2

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Abstract interpretations

15

…
…

𝛼1

𝛼2

𝛾1

𝛾2

𝛼1;𝛼2

𝛾2;𝛾1

𝛼1;𝛼2;𝛾2;𝛾1

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Intuition 2

16

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot17

Height

Fingerprint

Eye color

DNA

...

...

,

Individual heights

min, max

Phone metadata

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Interval abstraction
• Example: interval abstraction (also called box

abstraction)

18

Set of points Interval abstraction
[mx,Mx]x[my,My]

mx Mx

my

My

x

y

𝛼

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Intuition 3

19

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

A C program and one of its executions

20

#include <stdio.h>
int main()
{
 int x, y;
 printf("Enter two integers: ");
 scanf("%d %d",&x, &y);
/* 1: */ while ((x != 6) || (y != 0)) {
 printf("x = %d, y = %d\n",x,y);
/* 2: */ x = x + 3;
/* 3: */ if (x > 10) x = -x;
/* 4: */ y = y - 2;
/* 5: */ if (y < -5) y = -y;
 }
/* 6: */ printf("x = %d, y = %d\n",x,y);
}

Enter two integers: x = 0, y = 0
x = 3, y = -2
x = 6, y = -4
x = 9, y = 6
x = -12, y = 4
x = -9, y = 2
x = -6, y = 0
x = -3, y = -2
x = 0, y = -4
x = 3, y = 6
x = 6, y = 4
x = 9, y = 2
x = -12, y = 0
x = -9, y = -2
x = -6, y = -4
x = -3, y = 6
x = 0, y = 4
x = 3, y = 2
x = 6, y = 0

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Graphical representation of the execution (I)

21

x
x = 0, y = 0 x = 6, y = 0

x = 9, y = 6

x = -12, y = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Graphical representation of the execution (2)

22

x = 6, y = 0

x = 0, y = 0

x, y

t0 18

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot23

Formalize what it means to run a program

trajectory

state

time

Semantics

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot24

Formalize what you are interested to know about program behaviors

Properties (Collecting semantics)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot25

!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

Formalize what you are interested to prove about program behaviors

Specification

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot26

!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

Abstract away all information on program behaviors irrelevant to the proof

Abstraction

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot27

!"##$%&'(
)*+,'-)"*$'#

."*%$//'0(1"0'

2%#)*+-)$"0("3()4'()*+,'-)"*$'#

The proof is fully automatic

Verification

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot28

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2$,.#/1.%"()"3).4').#/0'1."#%',

Never forget any possible case so the abstract proof is correct in the concrete

Soundness

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot29

Try a few cases

Unsound methods: testing

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot3030

Simulate the beginning of all executions (so called bounded model-checking)

Bounded model-checking

Forbidden zone

Possible
trajectories

Unsound methods: bounded model checking

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot31

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Unsound methods: soundiness

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot32

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#)"#)3/-,')/-/#4)5

6-/#4)777

When abstract proofs may fail while concrete proofs would succeed

By soundness an alarm must be raised for this over-approximation!

Alarms

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot33

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#

3-/#4)555

The abstract alarm may correspond to a concrete error

True alarm

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot34

!"#$%&&'())*"('

+",,%$-')
.#/0'1."#%',

!/-,')/-/#2

3-/#2)444

The abstract alarm may correspond to no concrete error (false negative)

False alarm

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

What to do in presence of false alarms
• False alarms are ultimately unavoidable (Gödel's

incompleteness)

• Consider finite cases or decidable cases only (model-
checking, does not scale)

• Ask for human help by providing information on the
program behavior (theorem provers, SMT solvers),
program specific and labor costly

• Have specialists refine the abstract interpretation (e.g.
Astrée, http://www.absint.com/astree/index.htm),
shared cost

35

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot36

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

The very first static analysis

37

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Brahmagupta

38

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot39

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot40

• The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

• Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

• Useful in practice (if you know what to do
when you don't know the sign)

• e.g. in compilation: do not optimize (a
division by 2 by a shift when positive)

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot41

• The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

• Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

• Useful in practice (if you know what to do
when you don't know the sign)

• e.g. in compilation: do not optimize (a
division by 2 by a shift when positive)

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot42

• The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

• Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

• Useful in practice (if you know what to do
when you don't know the sign)

• e.g. in compilation: do not optimize (a
division by 2 by a shift when positive)

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot43

• The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

• Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

• Useful in practice (if you know what to do
when you don't know the sign)

• e.g. in compilation: do not optimize (a
division by 2 into a shift when positive(*))

(*) Unless processor uses 2's complement and can shift the sign.

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot44

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot45

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot46

wrong

The rule of signs by Brahmagupta (628)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot47

The rule of signs by Michel Sintzoff (1972)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot48

The rule of signs by Michel Sintzoff (1972)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot49

wrong
= 0∈pos x -1∈neg
= 0∉neg

The rule of signs by Michel Sintzoff (1972)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

The rule of signs Cousot & Cousot (1979)

50

α

∅

{0} {1}{-1}

{-1,0}

{-1,0,1}

{-1,1} {0,1}

-

⟘

⟙

0

+

𝛾

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

The rule of signs Cousot & Cousot (1979)

51

α

∅

{0} {1}{-1}

{-1,0}

{-1,0,1}

{-1,1} {0,1}

-

⟘

⟙

0

+

𝛾

inclusion/
implication inclusion/

implication

Galois
connection

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

The rule of signs Cousot & Cousot (1979)

52

α

∅

{0} {1}{-1}

{-1,0}

{-1,0,1}

{-1,1} {0,1}

-

⟘

⟙

0

+

𝛾

+ + + = +
𝛾 𝛾
{0,1} + {0,1} = {0,1,2[2]} = {0,1}

inclusion/
implication inclusion/

implication

Galois
connection

calculational
design method α

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Application of abstract
interpretation to static

analysis

53

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

All computer scientists have experienced bugs

• Checking the presence of bugs by debugging is great

• Proving their absence by static analysis is even better!

54

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J✁✁✁— 3 — []¨—✄✄✄I ľ P. Cousot

Ariane 5.01 failure Patriot failure Mars orbiter loss Heartbleed
 (overflow) (float rounding) (unit error) (buffer overrun)

unsigned int payload = 18; /* Sequence number + random bytes */
unsigned int padding = 16; /* Use minimum padding */

/* Check if padding is too long, payload and padding
* must not exceed 2^14 - 3 = 16381 bytes in total.
*/

OPENSSL_assert(payload + padding <= 16381);

/* Create HeartBeat message, we just use a sequence number
 * as payload to distuingish different messages and add
 * some random stuff.
 * - Message Type, 1 byte
 * - Payload Length, 2 bytes (unsigned int)
 * - Payload, the sequence number (2 bytes uint)
 * - Payload, random bytes (16 bytes uint)
 * - Padding
 */

buf = OPENSSL_malloc(1 + 2 + payload + padding);
p = buf;
/* Message Type */
*p++ = TLS1_HB_REQUEST;
/* Payload length (18 bytes here) */
s2n(payload, p);
/* Sequence number */
s2n(s->tlsext_hb_seq, p);
/* 16 random bytes */
RAND_pseudo_bytes(p, 16);
p += 16;
/* Random padding */
RAND_pseudo_bytes(p, padding);

ret = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Static analysis
• Check program properties (automatically, using the

program text only, without running the program)

• Difficulties:

• Undecidability / complexity:

• Precision

• Scalability

• Soundness (correctness)

• Induction: widening/narrowing

55

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Fixpoint

56

Fixpoint equationfy > 0g hypothesis
x = y
fI(x; y)g loop invariant
while (x > 0) {

x = x - 1;
}

Floyd-Naur-Hoare verification conditions:
(y > 0 ^ x = y) =) I(x; y) initialisation

(I(x; y) ^ x > 0 ^ x0 = x` 1) =) I(x0; y) iteration

Equivalent fixpoint equation:

I(x; y) = x > 0 ^ (x = y _ I(x+ 1; y)) (i.e. I = F (I) (5))

(5) We look for the most precise invariant I, implying all others, that is lfp=) F .

CSE, SNU, Seoul, 09/30/2008 J�� � – 52 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Iterates

57

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Iterates

58

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
0

y

x

I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Iterates

59

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
0

y

x

I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
1

y

x

I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Iterates

60

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
0

y

x

I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
1

y

x

I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
2

y

x

I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Convergence acceleration: widening

61

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
0

y

x

I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
1

y

x

I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
2

y

x

I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Fixed point

62

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
0

y

x

I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
1

y

x

I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
2

y

x

I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Octagons

63

Accelerated Iterates I = lim
n!1

F

n

(false)

I

0

(x; y) = false

y

x

I

1

(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I

1

(x; y) = 0 6 x = y
0

y

x

I

2

(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I

2

(x; y) = 0 6 x 6 y 6 x+ 1
1

y

x

I

3

(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I

3

(x; y) = 0 6 x 6 y 6 x+ 2
2

y

x

I

4

(x; y) = I

2

(x; y)

`
I

3

(x; y) widening
I

4

(x; y) = 0 6 x 6 y
I

5

(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I

5

(x; y) = I

4

(x; y) fixed point!

The invariants are computer representable
with octagons!

CSE, SNU, Seoul, 09/30/2008 J�� � – 53 –? []¨ –⇤ ⇤⇤I © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot6464

Industrial results obtained with Astrée
– Automatic proofs of absence of runtime
errors in Electric Flight Control Soft-
ware:
– A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb
(Nov. 2003)
– A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
no false alarm, World premières !

– Automatic proofs of absence of runtime
errors in the ATV software (2):
– C version of the automatic docking software: 102.000 lines of
C, 23s on a Quad-Core AMD Opteronó processor, 16 Gb (Apr.
2008)

(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.

Airbus, 12/04/2008 J�� � – 27 –? []¨ –⇤ ⇤⇤I © P. Cousot

Industrialisation: Development in cooperation with Airbus France

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Application of abstract
interpretation to

program proof methods

65

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Maximal execution trace

66

#include <stdio.h>
int main() {
 int x,y;
 printf("Enter an integer: ");
 scanf("%d",&x); y = x;
/* 1: */ while (x != 0) {
 printf("x = %d, y = %d\n",x,y);
/* 2: */ x = x - 1;
/* 3: */ y = y + 2;
 }
/* 4: */ printf("x = %d, y = %d\n",x,y); }

⟨1:,3,3,3⟩ ⟶ ⟨2:,3,3,3⟩ ⟶ ⟨3:,3,2,3⟩ ⟶ ⟨1:,3,2,5⟩ ⟶ ⟨2:,3,2,5⟩
⟶ ⟨3:,3,1,5⟩ ⟶ ⟨1:,3,1,7⟩ ⟶ ⟨2:,3,1,7⟩ ⟶ ⟨3:,3,0,7⟩ ⟶
⟨1:,3,0,9⟩ ⟶ ⟨6:,3,0,9⟩

Enter an integer: 3
x = 3, y = 3
x = 2, y = 5
x = 1, y = 7
x = 0, y = 9

Enter an integer: -1
x = -1, y = -1
x = -2, y = 1
x = -3, y = 3
x = -4, y = 5
…
x = -738245, y = 1476487
…

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Maximal execution trace

67

#include <stdio.h>
int main() {
 int x,y;
 printf("Enter an integer: ");
 scanf("%d",&x); y = x;
/* 1: */ while (x != 0) {
 printf("x = %d, y = %d\n",x,y);
/* 2: */ x = x - 1;
/* 3: */ y = y + 2;
 }
/* 4: */ printf("x = %d, y = %d\n",x,y); }

⟨1:,3,3,3⟩ ⟶ ⟨2:,3,3,3⟩ ⟶ ⟨3:,3,2,3⟩ ⟶ ⟨1:,3,2,5⟩ ⟶ ⟨2:,3,2,5⟩
⟶ ⟨3:,3,1,5⟩ ⟶ ⟨1:,3,1,7⟩ ⟶ ⟨2:,3,1,7⟩ ⟶ ⟨3:,3,0,7⟩ ⟶
⟨1:,3,0,9⟩ ⟶ ⟨6:,3,0,9⟩

Enter an integer: 3
x = 3, y = 3
x = 2, y = 5
x = 1, y = 7
x = 0, y = 9

Enter an integer: -1
x = -1, y = -1
x = -2, y = 1
x = -3, y = 3
x = -4, y = 5
…
x = -738245, y = 1476487

value y of y
value 𝑥 of x

initial value 𝑥0 of x
control point

state

transition ∈ trans ⟦P⟧initial state ∈ init ⟦P⟧

memory
state

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Maximal trace semantics
• The trace semantics of a program is the set of all

possible maximal finite or infinite execution traces for
that program 

• The trace semantics of a programing language maps
programs to their trace semantics

68

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Inductive definition
• Partial traces:

• A trace with one initial state is a partial trace

• A partial trace extended by a transition is a partial
trace

• Maximal traces:

• Finite traces with no extension by a transition

• Infinite traces which prefixes are all partial traces

69

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Fixpoint partial trace semantics
• initial states of program P: init ⟦P⟧

• transitions of programs P: trans ⟦P⟧

• Ft⟦P⟧𝑋 = { s | s ∈ init ⟦P⟧ } ∪  
 { σss' | σs ∈ 𝑋 ∧ ss'∈ trans ⟦P⟧ }

• St⟦P⟧ = lfp⊆ Ft⟦P⟧

70

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Invariance abstraction
• Collect at each control point the possible values of

variables when execution reaches that control point

• α(𝑋)c = {m | ∃σ,σ'. σ⟨c,m⟩σ' ∈ 𝑋}

• Invariance semantics: Si⟦P⟧ = α(St⟦P⟧)

71

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Invariance abstraction
• Collect at each control point the possible values of

variables when execution reaches that control point

• Si⟦P⟧ = α(St⟦P⟧)c = {m | ∃σ,σ'. σ⟨c,m⟩σ' ∈ St⟦P⟧}

72

#include <stdio.h>
int main() {
 int x,y;
 printf("Enter an integer: ");
 scanf("%d",&x); y = x;
/* 1: */ while (x != 0) {
 printf("x = %d, y = %d\n",x,y);
/* 2: */ x = x - 1;
/* 3: */ y = y + 2;
 }
/* 4: */ printf("x = %d, y = %d\n",x,y); }

{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 - 2𝑥}
{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 - 2𝑥}
{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 - 2𝑥 - 2}
{⟨𝑥0, 𝑥, y⟩ | y = 3𝑥0 ∧ 𝑥 = 0}

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Calculations design of the verification conditions

• α(Ft⟦P⟧𝑋)  
= 𝛌 c.{m | ∃σ,σ'. σ⟨c,m⟩σ' ∈ 𝑋} 
= … 
= Fi⟦P⟧(α(𝑋)) 
where Fi⟦P⟧ are the Turing/Floyd/Naur/Hoare

verification conditions

• It follows that Si⟦P⟧ = lfp⊆ Fi⟦P⟧

• The proof method is then by fixpoint induction (Tarski
1955)

73

.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Application to the
semantics

of programming languages

74

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

General idea
• All known semantics are abstractions of a most

precise semantics

75

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Abstraction to denotational semantics
• The maximal trace semantics Sm⟦P⟧ (maximal finite

and infinite execution traces

• Denotational semantics abstraction:

• Sd⟦P⟧ = α(Sm⟦P⟧)

• α(𝑋) = 𝛌 s.{s' | ∃σ. sσs' ∈ 𝑋} ∪  
 {⟘ | ∃σ. sσ… ∈ 𝑋}  
 
i.e. a map of initial states to the set of final states
plus ⟘ in case of non-termination  

76

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Hierarchy of abstractions

77

54

Hoare
logics

weakest
precondition
semantics

denotational
semantics

relational
semantics

trace
semantics

equivalence
abstraction✲

restriction
infinite

demoniac
deterministic

naturalangelic

τ⊣!

τ ∂

τ EM

τD

ττS ττ ♯τ ♭

τ⊤

τwp

τ tHτ pH

τwlp

τ +⃗

τ+ τω

τ ω⃗

τ gH

τ gwp

τ⊣?

τ ♮

τ∞

τ ∞⃗

τ

✟✟✟✯
✉

✘✘✘✘✘✘✘✘✘✘✘✿ ✉

✉

✉

✡
✡
✡
✡✣

✉

✉ ✉ ✉

✉

✻

✻ ✻✏✏✏✶

✉

✉

✉

✉✟✟✟✟✟✯

✟✟✟✟✟✯

✟✟✟✟✟✯

❍❍❍❍❍❨

❍❍❍❍❍❨

❍❍❍❍❍❨

❍❍❍❍❍❨

✉❍❍❍❍❍❨ ✉

✉

✉

✉

✉

✉✉

✉

✉

✉

✉

✏✏✏✏✏✏✏✏

✏✏✏✏✏✏✏✏✶

✏✏✏✏✏✶

Figure 5. The hierarchy of semantics

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

idem for Prolog

• all semantics are abstractions of Sd⟦P⟧

78

(where the composition of partial correctness abstractions with –C leads to
non-computable semantics but are useful when reasoning on program imple-
mentations).

11.4 The Hierarchy of Abstractions and Semantics

The combination of the instantiation abstraction of Sec. 11.2.3 and the in-
formation abstraction of Sec. 11.3.8 yields to the two-dimensional hierarchy
of abstractions of Fig. 1. Missing in the picture is the partial correctness third
abstraction dimension of Sec. 11.1.2.

•
lazy

S¸JP K

–

¸

cut
S!nJP K

–

!n•

breadth-
first

SBJP K
•

–

B

Prolog

SCJP K
•

–

C

• computed
answers
s-models
SmJP K

–

m

most general
call patterns

SpJP K

•

–

p

most general
SLD-trees

SKJP K

•

–

K

most general
derivations

SdJP K

•

• correct
answers
c-models
SimJP K

–

m

• instantiated
call patterns

SipJP K

–

p

• instantiated
SLD-trees

SiKJP K

–

K

• instantiated
derivations

SidJP K

•
ground

Herbrand
models
SgmJP K

–

m

•
ground

call patterns
SgpJP K

–

p

•
ground

SLD-trees
SgKJP K

–

K

•
ground

derivations
SgdJP K

–

id

–

iK

–

ip

–

im

–

gd

–

gK

–

gp

–

gm

Fig. 1. The hierarchy of maximal abstractions

By applying this hierarchy of abstractions to the most general maximal deriva-
tion semantics SdJP K, we get the hierarchy of maximal semantics given in Fig.
2. Classical examples in the hierarchy of semantics is given in Fig. 3, some of
which are detailed below.

11.4.1 The s-semantics

The s-semantics SsJP K provides computed answers [46]:

SsJP K , –ds(SdJP K)
25

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Conclusion

79

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Abstract interpretation
• A well-developed theory, still in progress

• Active research e.g.

• abstract domains to handle e.g. complex data
structures

• abstraction of parallelism with weak memory
models

• applications to biology, …

• Industrial-quality static analyzers

80

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Industrialisation: Astrée

81

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Industrialisation: Astrée

82

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Many other static analyzers
• Julia (Java) http://www.juliasoft.com

• Ikos, NASA https://ti.arc.nasa.gov/opensource/ikos/

• Clousot for code contract, Microsoft, https://
github.com/Microsoft/CodeContracts

• Infer (Facebook) http://fbinfer.com

• Zoncolan (Facebook)

• Google

• …

83

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

• Users of Astrée:

•Why not all software developers use
static analysis tools?

84

…

Static analysis for software development

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Irresponsibility
• Computer engineering is the only technology where

developers are not responsible for their errors, even
the trivial ones:

85

Warranty
Excerpt from Microsoft software licence:

DISCLAIMER OF WARRANTIES. . . . MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FIT-
NESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. . . .

You get nothing for your money either!

Minta Martin Lecture, MIT, May 13th, 2005 — 25 — ľ P. Cousot

Traditional software validation methods

– The law cannot enforce more than “best practice”
– Manual software validation methods (code reviews, sim-
ulations, tests, etc.) do not scale up
– The capacity of programmers/computer scientists re-
mains essentially the same
– The size of software teams cannot grow significantly
without severe efficiency losses

Minta Martin Lecture, MIT, May 13th, 2005 — 26 — ľ P. Cousot

Mathematics and computers can help

– Software behavior can be mathematically formalized
! semantics
– Computers can perform semantics-based program analy-
ses to realize verification ! static analysis
- but computers are finite so there are intrinsic lim-
itations ! undecidability, complexity
- which can only be handled by semantics approxi-
mations ! abstract interpretation

Minta Martin Lecture, MIT, May 13th, 2005 — 27 — ľ P. Cousot

Abstract interpretation
(1) very informally

Minta Martin Lecture, MIT, May 13th, 2005 — 28 — ľ P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

The future
• Safety and security does matter to the general public

• Computer scientists will ultimately be held responsible
for there errors

• At least the automatically discoverable ones

• Since this is now part of the state of the art

• Automatic static analysis, verification, etc has a brilliant
future.

86

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot87

``Finding people who really know static analysis
is very hard, you should tell your students that if
they want a great job in a Silicon Valley company
they should study abstract interpretation not
JavaScript. Feel free to quote me on that ;-)’’

Francesco Logozzo, designer of the Zoncolan static
analyzer at Facebook wrote me on 09/12/2016:

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

Selected bibliography
• Patrick Cousot, Radhia Cousot:  

Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. POPL 1977: 238-252

• Patrick Cousot, Nicolas Halbwachs:  
Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

•Patrick Cousot, Radhia Cousot:  
Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

• Patrick Cousot, Radhia Cousot:  
Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP 1992: 269-295

• Patrick Cousot:  
Types as Abstract Interpretations. POPL 1997: 316-331

• Patrick Cousot, Radhia Cousot:  
Temporal Abstract Interpretation. POPL 2000: 12-25

• Patrick Cousot, Radhia Cousot:  
Systematic design of program transformation frameworks by abstract interpretation. POPL 2002: 178-190

• Patrick Cousot:  
Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103
(2002)

• Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: 
A static analyzer for large safety-critical software. PLDI 2003: 196-207

• Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: 
The ASTREÉ Analyzer. ESOP 2005: 21-30

•Patrick Cousot, Radhia Cousot, Roberto Giacobazzi:  
Abstract interpretation of resolution-based semantics. Theor. Comput. Sci. 410(46): 4724-4746 (2009)

•Patrick Cousot, Radhia Cousot:  
An abstract interpretation framework for termination. POPL 2012: 245-258

•Patrick Cousot, Radhia Cousot:  
A Galois connection calculus for abstract interpretation. POPL 2014: 3-4

•Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: 
Static Analysis and Verification of Aerospace Software by Abstract Interpretation. Foundations and Trends in Programming Languages
2(2-3): 71-190 (2015)

88

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 © P. Cousot

The End, Thank You

89

