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The complexity of large programs grows faster than the il ability of p in
charge of their and The direct is alot of errors and bugs
in programs mostly debugged by their end: . P are not ible for these

bugs. They are not required to produce provably safe and secure programs. This is because
professionals are only required to apply state of the art techniques, that is testing on finitely many
cases. This state of the art is changing rapidly and so will irresponsibility, as in other
manufactuﬁng disciples.
and cost: ive tools have app: recently that can avoid bugs with possible
i for

in ion, banks, privacy of social networks, etc.

Entirely automatic, they are able to capture all bugs g the vi of healthiness
rules such as the use of operations with arguments for which they are undefined.

These tools are formally on They are based on a definition of the

of ifying all ions of the prog: ofa

Program of interest are of these ing away all

aspects of the semantics not relevant to a onp This yields proof

methods.

Full automation is more difficult of ility: cannot always prove

programs correct in finite time and y. Further y for

which Bugs may be signalled that are impossible in any

execution (but still none is forgotten). This has an economic cost, much less than testing.

‘Moreover, the best static analysis tools are able to reduce these false alarms to almost zero. A

me-oonsumlng and error-prone task which is too difficult, if not impossible for programmers,
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Scientific research

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 3 © P.Cousot



Scientific research

® |n Mathematics/Physics:

trend towards unification and synthesis through
universal principles

® |n Computer science:

trend towards dispersion and parcellation through a

ever-growing collection of local ad-hoc techniques for
specific applications

An exponential process, will stop!
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Example: reasoning on computational structures
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synthesis Effect Denotational analysis Separation
Grammar SyStems semantics CEGAR logic
analysis Y T Theories Program Termination
Statistical rface  combination transformation Proof

semantics

model-checking Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity model analysis
proof  execution analysis  checking Malware

Probabilistic = Quantum entanglement Bisimulation  detection

verification detection SMT solvers Code
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Intuition |
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Concrete
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Abstraction |
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Abstraction 2
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Concretization 2
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Concretization |

L n e ne
A, b Ao, &Sy
[ ] n e n e
- e
- T aa T aa
~ A<y &<y
' n e ne
- -
- T aa T e
N~ A<y <y

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 3 © P.Cousot



Abstract interpretations




Abstract interpretations

0413042;/72;/}/1




Intuition 2
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Fingerprint

Eye color

Phone metadata
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Interval abstraction

® Example:interval abstraction (also called box
abstraction)

:  ,
mx MX

Set of points Interval abstraction
[ Mix [ x[my, My ]
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Intuition 3

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 9 © P.Cousot



A C program and one of its executions

#include <stdio.h>

int main()
{

/x 1 %/
/* 2: %/
/* 31 %/
/*x 4 x/
/* 51 x/
/* 6: %/

}

int x, vy;

printf("Enter two integers: ");
scanf("%sd %d",&x, &y);

while ((x '=6) || (y !'=0)) {

printf("x = %d, y = %d\n",x,y);

X =X + 3;

if (X > 1@) X = =X;

y =y - 2;
} if (y < —5) y = =VY;
printf("x = %d, y = %d\n",x,y);

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Enter two integers: x =0,y =0

x=3,y=-2
X=6,y=-4
9,y =6

-12, y =4
= -9,y =2
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= _6, y =0
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Graphical representation of the execution (l)
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Graphical representation of the execution (2)

X’yA

x=6,y=0
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Semantics

Formalize what it means to run a program

state
A

e

trajectory

» time
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Properties (Collecting semantics)

Formalize what you are interested to know about program behaviors

Possible
~ trajectories
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Specification

Formalize what you are interested to prove about program behaviors

Forbiden zone

_ Possible
trajectories
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Abstraction

Abstract away all information on program behaviors irrelevant to the proof
A

_ Possible
trajectories

Abstraction of the trajectories
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Verification

The proof is fully automatic

Forbidden zone

_ Possible
D trajectories

Abstraction of the trajectories
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Soundness

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

_ Possible
D trajectories

Abstraction of the trajectories
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Unsound methods: testing

Iry a few cases

Forbidden zone

Possible
- [ trajectories

Test of a few trajectories
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Unsound methods: bounded model checking

Simulate the beginning of all executions (so called bounded model-checking)

Forbidden zone

Possible
trajectories

Bounded model-checking
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Unsound methods: soundiness

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

' Error !!
Forbidden zone rror

Possible

D " trajectories

Erroneous trajectory abstraction
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Alarms

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone ‘ Alarm !

_ Possible
D trajectories

Error or false alarm ?

By soundness an alarm must be raised for this over-approximation!
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True alarm

The abstract alarm may correspond to a concrete error

Forbidden zone “‘ Alarm !

Abstract interpretation, SAVE 16, Changsha, 10 December 2016
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False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone Alarm!!!

_ Possible
D trajectories

False alarm
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What to do in presence of false alarms

® False alarms are ultimately unavoidable (Godel's
incompleteness)

® Consider finite cases or decidable cases only (model-
checking, does not scale)

® Ask for human help by providing information on the
program behavior (theorem provers, SMT solvers),
brogram specific and labor costly

® Have specialists refine the abstract interpretation (e.g.
Astree, http://www.absint.com/astree/index.htm),

shared cost
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Collecting semantics: Intervals:

partial traces x € |a, D]

Y Y

Octagons: Ellipses:
+x+y<a x? 4+ by? —axy < d
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Simple congruences:

x = alb]

Exponentials:

_abt < y(t) < abt
36
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The very first static analysis
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Brahmagupta

Brahmagupta (Sanskrit: SG[[);
(598—c.670 CE) was an

Indian mathematician and astronomer who
wrote two important works on Mathematics and
Astronomy: the Brahmasphutasiddhanta
(Extensive Treatise of Brahma) (628), a
theoretical treatise, and the Khandakhadyaka,
a more practical text.

Fields Mathematics, Astronomy
Known for Zero, modern Number system
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The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;
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The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;
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The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)

* e.g. in compilation: do not optimize (a
division by 2 into a shift when positive")

() Unless processor uses 2's complement and can shift the sign.
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The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[...]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.
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The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;
[...]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.

18.33. The product of a negative and a positive is negative, of two
negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.
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The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;
[...]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.

18.33. The product of a negative and a positive is negative, of two

negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.

18.34. A positive divided by a positive or a negative divided by a
negative is positive; a zero divided by a zero is zero; a positive divided
by a negative is negative; a negative divided by a positive is [als0O]

negative.
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The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object 'pos' when
a and b are the objects "pos'" or "neg', and when
the valuation is defined as follows :

pOS+pOS=pos POS XpOS=pos
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxneg=pos
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q)

V(0)=V(1l)=...=pos

V(-1)=V(-2)=...™neg

The valuation of axa+bxb yields '"pos'" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pOSs ,pOS=poSs =pOs ,pOS=poSs

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the
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For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object 'pos' when
a and b are the objects "pos'" or "neg', and when
the valuation is defined as follows :

pOS+pOS=pos POS XpOS=pos
pos+neg=pos,neg posxneg=neg
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=pOSs ,pOS=poSs =pOs ,pOS=poSs

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the
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The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object '"pos' when
a and b are the objects "pos'" or "neg', and when
the valuation is defined as follows :

pOS+pOS=pos POS XpOS=pos

postneg=pos,neg posxneg=neg

neg+pos=pos,neg negxpos=neg

neg+neg=neg negxneg=pos Oepos x -l eneg
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q) =0

V(0)=V(1l)=,..=pos - %neg

The valuation of axa+bxb yields 'pos'" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pOSs ,pOS=poSs =pOs ,pOS=poSs

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the
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The rule of signs Cousot & Cousot (1979)

{1,0,1}
S~ T
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The rule of signs Cousot & Cousot (|979)

‘inclusion/ lusion/
implication nciusion
implication
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The rule of signs Cousot & Cousot (|979)

inclusion/

implication imglllijcsa{::)ig/n
+ 4+ + — 1
calculational R !
desigh method K K -

0.1} 4 {01} = {0,122} = (0.1}
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Application of abstract
Interpretation to static
analysis
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All computer scientists have experienced bugs

Ariane 5.01 failure  Patriot failure  Mars orbiter loss Heartbleed
- (overflow) .(float rounding) - (unit error) (buffer overrun)

® Checking the presence of bugs by debugging is great

® Proving their absence by static analysis is even better!
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Static analysis

® Check program properties (automatically, using the
program text only, without running the program)

e Difficulties:
® Undecidability / complexity:
® Precision
® Scalability
® Soundness (correctness)

® |nduction: widening/narrowing
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Fixpoint

{y > 0} <+ hypothesis Fixpoint equation

X =y
{I(z,y)} < loop invariant
while (x > 0) {

X =X - 1;
}

Floyd-Naur-Hoare verification conditions:
(y=>20Az=vy) = I(z,v) initialisation
(I(z,y) Nz >0Az' =z —1) = I(Z,y) iteration
Eiquivalent fixpoint equation:
Iz,y) =z>0AN(z=yVI(z+1,y)) (i.e. I = F(I)®)

() We look for the most precise invariant I, implying all others, that is Ifp  F.
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|terates

Iterates I = lim F™(false) °|

I°(z,y) = false oo
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|terates

Iterates I = lim F™(false) ¥
0 n— 00
I°(z,y) = false
I'Nz,y) = 2> 0A(z=yVI(z+1,y)) y =
=0< =y
0 . T
CSE, SNU, Seoul, 09/30/2008 d<d@m<- 53 -7 |W-> @[> p © P. Cousot
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|terates

Iterates I = lim F™(false) ¥

I°(z,y) = false e

I'z,y) =z >20A(z=yVI(z+1,y))
=0<zz=y

P(z,y) =z>20A(z=yVI(z+1y))
=0szsysz+1

Abstract interpretation, SAVE 16, Changsha, 10 December 2016
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|terates

Iterates I = lim F"(false) Y
0 n—00
I (CD)y) — false
I'Nz,y) =2z 20A(z=yVI(z+1y)) ] S———
I(z,y) = 22 0A(z =y VI (z+1,)) W=
=0szsysz+1 ",,-
Fa
IB(m7y)_3720/\($:y\/_[2(x_{_1,y)) 1.':.-‘.-“'
=0<z<y<z+2 y%w
N 4
l"”rr
— — =T
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Convergence acceleration: widening

Accelerated Iterates ] = lim Fn(false) Y
I%(z,y) = false e

0<z<y

INz,y) =z >0A(z=yVI(z+1,1v)) Y *
Plz,y) =z>0A(z=yVIi(z+1y)) o z
=0<z<y<z+1 /A‘
I(z,y) = > 0A(z =y V Iz +1,9)) 1 4
=0<z<y<T+2 B
.J‘.I .
I*(z,y) I’(z,y) V I’(z,y) + widening 2
. T
. ',-""
4
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Fixed point

Accelerated Iterates ] = lim F™(false) °|
0 n— 00
I°(z,y) = false
Il(x)y) :$>OA($:yVIO($—|—1,y)) y*g‘x
IP(z,y) =z>0A(z=y VI (z+1,y)) y044‘$
=0<z<ysz+1 -‘_‘r
B(z,y) =z>20A(z=yVI¥(z+1,y)) 1~":'_.-'"
a0
I*(z,y) = I*(z,y) V I*(z,y) < widening ‘Y
=0<z<y Qm
Fz,y) = 2> 0A (2 =yV Iz +1,9))
= I%(z,y) fixed point! 1.-“'1'ﬁ
o
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Octagons

Accelerated Iterates I = lim F"(false) v

I%(z,y) = false oo

INz,y) =z >0 (z=yVI(z+1,y))
Plr,y) =z>20A(z=yVI(z+1,y))
=0<zsysz+1

PBz,y) =z>20A(zc=yVI*(z+1,y))
0<z<y<z+2

I?(z,y) V I’(z,y) < widening
O0<z<y

I*(z,y)

Fz,y) = 220/ (z=yV Iz +1,y)
= I*(z,y) fixed point!

The invariants are computer representable
with octagons!
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Industrialisation: Development in cooperation with Airbus France

— Automatic proofs of absence of runtime
errors in Hlectric Flight Control Soft-

ware:
— A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb

(Nov. 2003)
— A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
no false alarm, World premieres !

LN

== e

— Automatic proofs of absence of runtime
errors in the ATV software @: :
— C version of the automatic docking software: 102.000 lines of

C, 23s on a Quad-Core AMD Opteron™ processor, 16 Gb (Apr.
2008)

(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.
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Application of abstract
Interpretation to
program proof methods
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Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1, y=-1
int x,y; X =2,y =5 Xx==-2,y=1
printf("Enter an integer: "); x=1,y=7 X =-3,y =3
scanf("%d",&x); y = X; X=0,y=9 X =-4, y=25

/% 1: %/ while (x !'= 0) {

printf("x = %d, y = %d\n",x,y): X = —738245, y = 1476487
/* 2% %/ X =X - 1; -
/% 31 %/ y =y + 2;

ks
/* 4: x/ printf("x = %d, y = %d\n",x,y); }

(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) —» (1:,3,2,5) — (2:,3,2,5)
- (3:,3,1,5) —» (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)
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Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1, y=-1
int x,y; X =2,y =5 Xx==-2,y=1
printf("Enter an integer: "); x=1,y=7 X =-3,y=3
scanf("%d",&x); y = X; X=0,y=9 Xx=-4, y=5

/% 1: %/ while (x != 0) {

prlntf("x = %d, y = %d\n",x,y); X = —738245, y = 1476487
/* 21 x/ X = 1;
/* 31 %/ y = y + 2;

ks
/* 4: x/ printf("x = %d, y = %d\n",x,y); }

B - valuey of y ...
memory | T T
- value z of x ... -
state — state LT T e T
| initial value xo of x .. ™
_ control point ... -
initial state € init [P] transition € trans [P]
[ ' | [ | | VU Ny
(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) — (1:,3,2,5) — (2:,3,2,5)
- (3:,3,1,5) — (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)
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Maximal trace semantics

® The trace semantics of a program is the set of all

possible maximal finite or infinite execution traces for
that program

® The trace semantics of a programing language maps
programs to their trace semantics
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Inductive definition

® Partial traces:
® A trace with one initial state is a partial trace

® A partial trace extended by a transition is a partial
trace

® Maximal traces:

® Finite traces with no extension by a transition

® |nfinite traces which prefixes are all partial traces
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Fixpoint partial trace semantics

initial states of program P: init P
transitions of programs P: trans ||P]|

FU[P]|X ={s|seiinit|P] } u
{ oss' | os € X A ss'€ trans|P] }

St[P] = fp~ Ft[P]
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Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

¢ o(X)c={m | do,0'. o{c;m)c' € X}

® Invariance semantics: Si|P] = o(S'[P])
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Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

o Si[P] = a(SY|P])c = {m | do,0'. o(c,m)c' € S|P}

#include <stdio.h>
int main() {
int x,y;
printf("Enter an integer: ");

{< > y = 3370 - 233}\/* L s Sﬁairg(.'("id';;&g;;{y = X;

{<$O, X, y> y = 3330 - 233},\/* oe w printf("x = %d, y = %d\n",Xx,y);
i )
{( )

X X —1;
r k/ y y + 2;

y = 3x0- 2z -2} "7y

: k/  printf("x = %d, y = %d\n",x,y); }

y=3:60/\33:()}//*4
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Calculations design of the verification conditions

o o(Ft[P]X)
= Xc.{m | do,0'. o{c,m)c' € X}

= FI[P[(a(X))
where Fi|P| are the Turing/Floyd/Naur/Hoare

verification conditions
e It follows that Si[P] = Ifp° Fi[P]

® The proof method is then by fixpoint induction (Tarski
1955)
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Application to the
semantics
of programming languages
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General idea

® All known semantics are abstractions of a most
precise semantics
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Abstraction to denotational semantics

® The maximal trace semantics S™[P] (maximal finite

and infinite execution traces

® Denotational semantics abstraction:
e SUP] = a(S[P])
® o(X)=Ns{s'|do.sos' € X} U
{i|do.so... € X}

i.e. a map of initial states to the set of final states
plus | in case of non-termination
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Hierarchy of abstractions

Hoa}re _on o
logics

weakest o ®
precondition T T
semantics
TEVP T' T

denotational ﬁ o o o
semantics T T T T

relational
semantics

trace
semantics

e

T __, abstraction

| | | | | ___ equivalence
angelic natural demoniac __ _restriction
deterministic infinite
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idem for Prolog

ground
Herbrand
models
sem[P]
m
correct &
answers
c-models Hgmlirtld
call patterns
computed S'™M[P] D
answers Ser[P]
s-models ,
breadth- S™[P] instantiated @
lazy 'cut first ProLoG call pattorns
S'[F] sTLP] SP[P] se[pP] o SP[P] ground
most general o SISJEK-[HD?]GS
call patterns |
SP[P] P
“ instantiated
SLD-trees
SKIP] ground
most general deri\éations
SLD%trees ak ad See[P]
SK [[P]] «
instantiated
@ derivations
S'd [[ P]]

most general
derivations

si[P]

® all semantics are abstractions of S°[P]
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Conclusion
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Abstract interpretation

® A well-developed theory, still in progress
® Active research e.g.

® abstract domains to handle e.g. complex data
structures

® abstraction of parallelism with weak memory
models

® applications to biology, ...

® |ndustrial-quality static analyzers
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Industrialisation: Astree

Project  Analysis

Editors Edit Tools

Help

BEEHO 242 000 ¢ H

Example 1: scenarios

€ Welcome
Configuration

O Preprocessor

%% Parser

/" Analyzer

A Annotations
Results

& Overview

4 Call graph

/. Reports
Files

# astree.cfg

Preprocessed Original

( Project Summary  Resource Monitor
Errors: 2
Alarms on code locations
Run-time errors: 7
Data flow anomalies: 0
Rule violations: 0
Alarms on memory locations
Data races: 0
Reached code: 100%
Duration: 20s

Analyzed file: db/invalid/path/scenarios.c Original source: src/scenarios.c

rflow. *

¥/

= SPEED_SENSOR;

'/o-’ cast causing ov Type cast causing overflow.

= SPEED_SENSOR H

Precise handling of pointer arithmetics. recise handling of pointer arithmetics.
%/ %/
ptr = &ArrayBlockl[0]; ptr = &ArrayBlock([0];

if (uninitialized 1) {

if (uninitialized 1) {
S ; ArrayBlock[15] = 0x15;
¥

// easy case

if (uninitialized_2) {
¥
O/E"*'Ou a".!'

xplicit LI/O;.CC
ab).

o* corr'o.‘u»mrw:n overflow ari
alarms on explicit f/O'“CE
Oogmn‘-:fen-"e' tab).

= (short)((unsigned short)vx + (unsigned short)vy

= (short)((unsigned short)vx + (unsigned short)vy
__ASTREE_assert((-2==z && z==2));

__ASTREE_assert((-2==z && z==2));
91
) a2

4 4
Line 81, column 7 Line 77, column 1

[ call#Fmain@58 at scenarios.c:58.0-130.1

if@80=true at scenarios.c:80.4-82.5

ALARM (A): invalid dereference: dereferencing 1 byte(s) at offset(s) 15 may overflow the variable ArrayBlock of byte-size 10 at scenarios.c:81.6-20 ]

ERROR: Definite runtime error during assignment in this context. Analysis stopped for this context.

Filter: | ~ v || Typefiters | |Comment filters | 8 of 8 findings visible

Order Type Category Location
4 F Alarm (C) Out-of-bound array access # scenarios.c:81.17-19 out-of-bound array index {15} not incl

- Definite Alarm (A) |Possible overflow upon dereference |3 scenarios.c:81.6-20 -- invalid dereference: dereferencing 1 b;

F Alarm (A) # scenarios.c:84.8-23

Classification Comment

Use of uninitialized variables uninitialized read: reading 4 byte(s) at

F Definite Alarm (A)  Possible overflow upon dereference = # scenarios.c:85.6-17 invalid dereference: dereferencing1 b

F Alarm (A) Assertion failure # scenarios.c:127.4-40

assert failure _ASTREE_assert((second o
»

A Output | W Findings 4 Notreached 4 Watch 4 Search \p
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Industrialisation: Astree

Project  Analysis Editrs Tools Help

BELEHO 2% 2 O0®0® €«» CN

Example 1: scenarios ‘Q Overview
€ Welcome
Configuration
O Preprocessor v Count  Name

Findings/C l FindingsfF = Rule violatons = Reachability = Metrics = Data flow Filter

7 Alarms )
P Parser 3 Invalid usage of pointers and arrays Alarms (7 findings)

/" Analyzer 1 | Out-of-bound array access
A Annotations 2 Possible overflow upon dereference
1 Invalid ranges and overflows
SRt 1 F Overflow in conversion
1 Failed or invalid directives
4 Call graph 1 P Assertion failure
/. Reports 2 Uninitialized variables
2 P Use of uninitialized variables
2 Errors

* Overview

Files

Preprocessed Original

[ callEmain@58 at scenarios.c:58.0-130.1
if@80=true at scenarios.c:80.4-82.5
ALARM (C): out-of-bound array index {15} not included in [0, 9] at scenarios.c:81.17-19 ]

Filter: | v | | Type fiters | |Comment filters | 8 of 8 findings visible

Type Category Location Classification C

[ Project Summary  Resource Monitor F Notification Invalid conversion # scenarios.c:73.4-20 translate_warning(type): conversion from floating-¢
Errors: 2 F Alarm (C) Overflow in conversion # scenarios.c:73.4-20 double->signed short conversion range [0, 40000] r
Alarms on code locations

Run-time errors: 7 F Alarm (A) Use of uninitialized variables # scenarios.c:80.8-23 uninitialized read: reading 4 byte(s) at offset(s) 0 in+

Tl s 2n Alarm (C) Out-of-bound array access B scenarios.c:81.17-19 -- out-of-bound array index {15} not included in [0, 9]
Rule violations: 0 |

Alarms on memory locations P Definite Alarm (&)  Possible overflow upon dereference  # scenarios.c:81.6-20 invalid dereference: dereferencing 1 byte(s) at offse

Data races: 0
- . 4 (05848~ - . . .
hed cod 100% F Alarm (A) Use of uninitialized variables scenarios.c:84.8-23 unlnltl.allzed read: reading 4 byte(s) at offset(s) 0 in =

Duration: 19s 4 2
Y X7 A Output | W Findings 4 Notreached A Watch A Search &
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Many other static analyzers

® Julia (Java) http://www.juliasoft.com
® |kos, NASA https://ti.arc.nasa.gov/opensource/ikos/

® Clousot for code contract, Microsoft, https://
github.com/Microsoft/CodeContracts

® |nfer (Facebook) http://fbinfer.com

® Zoncolan (Facebook)

® Google
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Static analysis for software development

® Users of Astree:
@ ARBUS AREvVa (000 ebmpapst @cesa AN ...

® Why not all software developers use
static analysis tools?
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Irresponsibility

® Computer engineering is the only technology where
developers are not responsible for their errors, even
the trivial ones:

DISCLAIMER OF WARRANTIES. ... MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF

, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. ...
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The future

® Safety and security does matter to the general public

® Computer scientists will ultimately be held responsible
for there errors

® At least the automatically discoverable ones
® Since this is now part of the state of the art

® Automatic static analysis, verification, etc has a brilliant
future.
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Francesco Logozzo, designer of the Zoncolan static
analyzer at Facebook wrote me on 09/12/2016:

~ Finding people who really know static analysis
IS very hard, you should tell your students that if
they want a great job in a Silicon Valley company
they should study abstract interpretation not
JavaScript. Feel free to quote me on that ;-)”
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The End, Thank You
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