Abstract Interpretation

SAVE 2016,
Changsha, 10 December 2016

Patrlck Cousot

nyu.edu/~pcousot

This is an abstract interpretation

és

Iversi

Colloquium d'Informatique

de I'UPMC Sorbonne Un

contact : colloquium@lip6.fr
http://www.lip6.fr/colloquium/
Vidéo disponible sur le site

Abstract interpretation

Patrick Cousot

New York University

Amphi 15

4, place Jussieu
75005 Paris
Metro Jussieu

29 Septembre 2016
a 18h00

The complexity of large programs grows faster than the il ability of p in
charge of their and The direct is alot of errors and bugs
in programs mostly debugged by their end: . P are not ible for these

bugs. They are not required to produce provably safe and secure programs. This is because
professionals are only required to apply state of the art techniques, that is testing on finitely many
cases. This state of the art is changing rapidly and so will irresponsibility, as in other
manufactuﬁng disciples.
and cost: ive tools have app: recently that can avoid bugs with possible
i for

in ion, banks, privacy of social networks, etc.

Entirely automatic, they are able to capture all bugs g the vi of healthiness
rules such as the use of operations with arguments for which they are undefined.

These tools are formally on They are based on a definition of the

of ifying all ions of the prog: ofa

Program of interest are of these ing away all

aspects of the semantics not relevant to a onp This yields proof

methods.

Full automation is more difficult of ility: cannot always prove

programs correct in finite time and y. Further y for

which Bugs may be signalled that are impossible in any

execution (but still none is forgotten). This has an economic cost, much less than testing.

‘Moreover, the best static analysis tools are able to reduce these false alarms to almost zero. A

me-oonsumlng and error-prone task which is too difficult, if not impossible for programmers,

Computer Science and the Doctor és
Fourle}'ofGrenoble France. He was

A_:>

lip UPmC

1M@1 SORBONNE UNIVERSITES

Abstract interpretation, SAVE |6, Changsha, 10 December 2016

© P.Cousot

Scientific research

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 3 © P.Cousot

Scientific research

® |n Mathematics/Physics:

trend towards unification and synthesis through
universal principles

® |n Computer science:

trend towards dispersion and parcellation through a

ever-growing collection of local ad-hoc techniques for
specific applications

An exponential process, will stop!

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 4 © P.Cousot

Example: reasoning on computational structures

WCET : Operational
o _ Security protocole gyctems biology sEmantics
Xiomatic verification analysis o
semantics straction
Confidentiality Datziflqw clr;/]e(z:dkier:g Database refinement
: analysis query
analysis : Type
synthesis Effect Denotational analysis Separation
Grammar SyStems semantics CEGAR logic
analysis Y T Theories Program Termination
Statistical rface combination transformation Proof

semantics

model-checking Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity model analysis
proof execution analysis checking Malware

Probabilistic = Quantum entanglement Bisimulation detection

verification detection SMT solvers Code

Parsing Type theory Steganography Tautology testers refactoring

Abstract interpretation, SAVE |6, Changsha, |0 December 2016 5 © P.Cousot

Example: reasoning on computational structures

/ —

WCE.T . Security protocole g ctems biolo Operational
Axiomatic verification Y OlOgY semantics
semantics ATE7EE Abstraction

Confidentiality Data}flc?w cll;/]e(z:dkiell Database refinement
analysis e analysis | 8 query Type
Program ayalyation Obiuscation Dependence inference
synthesis Effoct Denotational analysis Separation
Grammar systems semantics CEGAR Io.glc.
analysis Theories Program Termination
Statistical Trace ombination transformation Proof
model-checking S€mantics Code Nterpolants Abstract Shape
Invariance Symbolic contracts Integrity — model analysis
proof execution analysis checking Malware
Probabilistic Quantum entanglement Bisimulation deé::ec;ion
ode

verification detection SMT solvers |
Parsing Type theory Steganography TAlitology tasters refw

()

Example: reasoning on computational structures

Abstract interpretation

/ L ———

WCET : Operational
Security protocole : P :

Axiomatic veri);‘lf:)ation Systems biology cemantics

analysis

semantics Abstraction

Confidentiality Data}flc?w cll;/]e(::dkieAg Database refinement
: analysis query

analysis , Type
Program evZ?:;L?Ln Obfuscation Dependence inference
synthesis Effoct Denotational analysis Separation

Grammar SYStEmS semantics CEGAR logic

analysis Y T Theories Program Termination
Statistical fac® combination transformation Proof

semantics

model-checking Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity model analysis
proof execution analysis checking Malware

Probabilistic Quantum entanglement Bisimulation deé::ec;ion
ode

verification detection SMT solvers |
Parsing Type theory Steganography TAlitology tasters refw

/

Intuition |

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 8 © P.Cousot

Concrete

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 9 © P.Cousot

Abstraction |

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 10 © P.Cousot

Abstraction 2

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I © P.Cousot

Concretization 2

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 2 © P.Cousot

Concretization |

L n e ne
A, b Ao, &Sy
[] n e n e
- e
- T aa T aa
~ A<y &<y
' n e ne
- -
- T aa T e
N~ A<y <y

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 3 © P.Cousot

Abstract interpretations

Abstract interpretations

0413042;/72;/}/1

Intuition 2

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 6 © P.Cousot

Fingerprint

Eye color

Phone metadata

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 7 © P.Cousot

Interval abstraction

® Example:interval abstraction (also called box
abstraction)

: ,
mx MX

Set of points Interval abstraction
[Mix [x[my, My]

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 8

© P.Cousot

Intuition 3

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 I 9 © P.Cousot

A C program and one of its executions

#include <stdio.h>

int main()
{

/x 1 %/
/* 2: %/
/* 31 %/
/*x 4 x/
/* 51 x/
/* 6: %/

}

int x, vy;

printf("Enter two integers: ");
scanf("%sd %d",&x, &y);

while ((x '=6) || (y !'=0)) {

printf("x = %d, y = %d\n",x,y);

X =X + 3;

if (X > 1@) X = =X;

y =y - 2;
} if (y < —5) y = =VY;
printf("x = %d, y = %d\n",x,y);

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Enter two integers: x =0,y =0

x=3,y=-2
X=6,y=-4
9,y =6

-12, y =4
= -9,y =2

X

= _6, y =0
= _3, y = -2
— O, y —— -

S S T S T R I S RS R S I
I
©
<
I

20

© P.Cousot

Graphical representation of the execution (l)

:i
7
A
7\
£
Ve
/ \17/\ i
87
\\\/ =
T

I~
5
\\

12 N

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 2 I © P.Cousot

Graphical representation of the execution (2)

X’yA

x=6,y=0

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 22 © P.Cousot

Semantics

Formalize what it means to run a program

state
A

e

trajectory

» time

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 23 © P.Cousot

Properties (Collecting semantics)

Formalize what you are interested to know about program behaviors

Possible
~ trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 24 © P.Cousot

Specification

Formalize what you are interested to prove about program behaviors

Forbiden zone

_ Possible
trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 25 © P.Cousot

Abstraction

Abstract away all information on program behaviors irrelevant to the proof
A

_ Possible
trajectories

Abstraction of the trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 26 © P.Cousot

Verification

The proof is fully automatic

Forbidden zone

_ Possible
D trajectories

Abstraction of the trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 27 © P.Cousot

Soundness

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

_ Possible
D trajectories

Abstraction of the trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 28 © P.Cousot

Unsound methods: testing

Iry a few cases

Forbidden zone

Possible
- [trajectories

Test of a few trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 29 © P.Cousot

Unsound methods: bounded model checking

Simulate the beginning of all executions (so called bounded model-checking)

Forbidden zone

Possible
trajectories

Bounded model-checking

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 30 © P.Cousot

Unsound methods: soundiness

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

' Error !!
Forbidden zone rror

Possible

D " trajectories

Erroneous trajectory abstraction

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 3 I © P Cousot

Alarms

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone ‘ Alarm !

_ Possible
D trajectories

Error or false alarm ?

By soundness an alarm must be raised for this over-approximation!

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 32 © P Cousot

True alarm

The abstract alarm may correspond to a concrete error

Forbidden zone “‘ Alarm !

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

33

_ Possible
trajectories

© P.Cousot

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone Alarm!!!

_ Possible
D trajectories

False alarm

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 34 © P Cousot

What to do in presence of false alarms

® False alarms are ultimately unavoidable (Godel's
incompleteness)

® Consider finite cases or decidable cases only (model-
checking, does not scale)

® Ask for human help by providing information on the
program behavior (theorem provers, SMT solvers),
brogram specific and labor costly

® Have specialists refine the abstract interpretation (e.g.
Astree, http://www.absint.com/astree/index.htm),

shared cost

35

Collecting semantics: Intervals:

partial traces x € |a, D]

Y Y

Octagons: Ellipses:
+x+y<a x? 4+ by? —axy < d

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Simple congruences:

x = alb]

Exponentials:

_abt < y(t) < abt
36

© P.Cousot

The very first static analysis

37

Brahmagupta

Brahmagupta (Sanskrit: SG[[);
(598—c.670 CE) was an

Indian mathematician and astronomer who
wrote two important works on Mathematics and
Astronomy: the Brahmasphutasiddhanta
(Extensive Treatise of Brahma) (628), a
theoretical treatise, and the Khandakhadyaka,
a more practical text.

Fields Mathematics, Astronomy
Known for Zero, modern Number system

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 38 © P.Cousot

The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

39 © P Cousot

The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 40 © P.Cousot

The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 4 I © P.Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 42 © P.Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

* The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)

* e.g. in compilation: do not optimize (a
division by 2 into a shift when positive")

() Unless processor uses 2's complement and can shift the sign.
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 43 © P.Cousot

The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[...]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 44 © P.Cousot

The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;
[...]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.

18.33. The product of a negative and a positive is negative, of two
negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 45 © P.Cousot

The rule of sighs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;
[...]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.

18.33. The product of a negative and a positive is negative, of two

negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.

18.34. A positive divided by a positive or a negative divided by a
negative is positive; a zero divided by a zero is zero; a positive divided
by a negative is negative; a negative divided by a positive is [als0O]

negative.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 46 © P.Cousot

The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object 'pos' when
a and b are the objects "pos'" or "neg', and when
the valuation is defined as follows :

pOS+pOS=pos POS XpOS=pos
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxneg=pos
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q)

V(0)=V(1l)=...=pos

V(-1)=V(-2)=...™neg

The valuation of axa+bxb yields '"pos'" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pOSs ,pOS=poSs =pOs ,pOS=poSs

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 47 © P.Cousot

The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object 'pos' when
a and b are the objects "pos'" or "neg', and when
the valuation is defined as follows :

pOS+pOS=pos POS XpOS=pos
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxneg=pos
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q)

V(0)=V(1l)=...=pos

V(-1)=V(-2)=...=neg

The valuation of axa+bxb yields 'pos'" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pOSs ,pOS=poSs =pOs ,pOS=poSs

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 48 © P.Cousot

The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object '"pos' when
a and b are the objects "pos'" or "neg', and when
the valuation is defined as follows :

pOS+pOS=pos POS XpOS=pos

postneg=pos,neg posxneg=neg

neg+pos=pos,neg negxpos=neg

neg+neg=neg negxneg=pos Oepos x -l eneg
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q) =0

V(0)=V(1l)=,..=pos - %neg

The valuation of axa+bxb yields 'pos'" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pOSs ,pOS=poSs =pOs ,pOS=poSs

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 49 © P.Cousot

The rule of signs Cousot & Cousot (1979)

{1,0,1}
S~ T

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 50 © P.Cousot

The rule of signs Cousot & Cousot (|979)

‘inclusion/ lusion/
implication nciusion
implication

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 5 I © P.Cousot

The rule of signs Cousot & Cousot (|979)

inclusion/

implication imglllijcsa{::)ig/n
+ 4+ + — 1
calculational R !
desigh method K K -

0.1} 4 {01} = {0,122} = (0.1}

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 52 © P.Cousot

Application of abstract
Interpretation to static
analysis

53

All computer scientists have experienced bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss Heartbleed
- (overflow) .(float rounding) - (unit error) (buffer overrun)

® Checking the presence of bugs by debugging is great

® Proving their absence by static analysis is even better!

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 54 © P.Cousot

Static analysis

® Check program properties (automatically, using the
program text only, without running the program)

e Difficulties:
® Undecidability / complexity:
® Precision
® Scalability
® Soundness (correctness)

® |nduction: widening/narrowing

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 55 © P.Cousot

Fixpoint

{y > 0} <+ hypothesis Fixpoint equation

X =y
{I(z,y)} < loop invariant
while (x > 0) {

X =X - 1;
}

Floyd-Naur-Hoare verification conditions:
(y=>20Az=vy) = I(z,v) initialisation
(I(z,y) Nz >0Az' =z —1) = I(Z,y) iteration
Eiquivalent fixpoint equation:
Iz,y) =z>0AN(z=yVI(z+1,y)) (i.e. I = F(I)®)

() We look for the most precise invariant I, implying all others, that is Ifp F.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 56 © P.Cousot

|terates

Iterates I = lim F™(false) °|

I°(z,y) = false oo

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 57 © P.Cousot

|terates

Iterates I = lim F™(false) ¥
0 n— 00
I°(z,y) = false
I'Nz,y) = 2> 0A(z=yVI(z+1,y)) y =
=0< =y
0 . T
CSE, SNU, Seoul, 09/30/2008 d<d@m<- 53 -7 |W-> @[> p © P. Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 58 © P.Cousot

|terates

Iterates I = lim F™(false) ¥

I°(z,y) = false e

I'z,y) =z >20A(z=yVI(z+1,y))
=0<zz=y

P(z,y) =z>20A(z=yVI(z+1y))
=0szsysz+1

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

(S"‘o
8

59

© P.Cousot

|terates

Iterates I = lim F"(false) Y
0 n—00
I (CD)y) — false
I'Nz,y) =2z 20A(z=yVI(z+1y))] S———
I(z,y) = 22 0A(z =y VI (z+1,)) W=
=0szsysz+1 ",,-
Fa
IB(m7y)_3720/\($:y\/_[2(x_{_1,y)) 1.':.-‘.-“'
=0<z<y<z+2 y%w
N 4
l"”rr
— — =T

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 60 © P.Cousot

Convergence acceleration: widening

Accelerated Iterates] = lim Fn(false) Y
I%(z,y) = false e

0<z<y

INz,y) =z >0A(z=yVI(z+1,1v)) Y *
Plz,y) =z>0A(z=yVIi(z+1y)) o z
=0<z<y<z+1 /A‘
I(z,y) = > 0A(z =y V Iz +1,9)) 1 4
=0<z<y<T+2 B
.J‘.I .
I*(z,y) I’(z,y) V I’(z,y) + widening 2
. T
. ',-""
4

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 6 I © P.Cousot

Fixed point

Accelerated Iterates] = lim F™(false) °|
0 n— 00
I°(z,y) = false
Il(x)y) :$>OA($:yVIO($—|—1,y)) y*g‘x
IP(z,y) =z>0A(z=y VI (z+1,y)) y044‘$
=0<z<ysz+1 -‘_‘r
B(z,y) =z>20A(z=yVI¥(z+1,y)) 1~":'_.-'"
a0
I*(z,y) = I*(z,y) V I*(z,y) < widening ‘Y
=0<z<y Qm
Fz,y) = 2> 0A (2 =yV Iz +1,9))
= I%(z,y) fixed point! 1.-“'1'ﬁ
o

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 62 © P.Cousot

Octagons

Accelerated Iterates I = lim F"(false) v

I%(z,y) = false oo

INz,y) =z >0 (z=yVI(z+1,y))
Plr,y) =z>20A(z=yVI(z+1,y))
=0<zsysz+1

PBz,y) =z>20A(zc=yVI*(z+1,y))
0<z<y<z+2

I?(z,y) V I’(z,y) < widening
O0<z<y

I*(z,y)

Fz,y) = 220/ (z=yV Iz +1,y)
= I*(z,y) fixed point!

The invariants are computer representable
with octagons!

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

y4

T
e
"'.l' |,-rf
__.-‘-‘,."
i~
iy
g . T

63

© P.Cousot

Industrialisation: Development in cooperation with Airbus France

— Automatic proofs of absence of runtime
errors in Hlectric Flight Control Soft-

ware:
— A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb

(Nov. 2003)
— A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
no false alarm, World premieres !

LN

== e

— Automatic proofs of absence of runtime
errors in the ATV software @: :
— C version of the automatic docking software: 102.000 lines of

C, 23s on a Quad-Core AMD Opteron™ processor, 16 Gb (Apr.
2008)

(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 64 © P.Cousot

Application of abstract
Interpretation to
program proof methods

65

Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1, y=-1
int x,y; X =2,y =5 Xx==-2,y=1
printf("Enter an integer: "); x=1,y=7 X =-3,y =3
scanf("%d",&x); y = X; X=0,y=9 X =-4, y=25

/% 1: %/ while (x !'= 0) {

printf("x = %d, y = %d\n",x,y): X = —738245, y = 1476487
/* 2% %/ X =X - 1; -
/% 31 %/ y =y + 2;

ks
/* 4: x/ printf("x = %d, y = %d\n",x,y); }

(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) —» (1:,3,2,5) — (2:,3,2,5)
- (3:,3,1,5) —» (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 66 © P.Cousot

Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1, y=-1
int x,y; X =2,y =5 Xx==-2,y=1
printf("Enter an integer: "); x=1,y=7 X =-3,y=3
scanf("%d",&x); y = X; X=0,y=9 Xx=-4, y=5

/% 1: %/ while (x != 0) {

prlntf("x = %d, y = %d\n",x,y); X = —738245, y = 1476487
/* 21 x/ X = 1;
/* 31 %/ y = y + 2;

ks
/* 4: x/ printf("x = %d, y = %d\n",x,y); }

B - valuey of y ...
memory | T T
- value z of x ... -
state — state LT T e T
| initial value xo of x .. ™
_ control point ... -
initial state € init [P] transition € trans [P]
[' | [| | VU Ny
(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) — (1:,3,2,5) — (2:,3,2,5)
- (3:,3,1,5) — (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 67 © P.Cousot

Maximal trace semantics

® The trace semantics of a program is the set of all

possible maximal finite or infinite execution traces for
that program

® The trace semantics of a programing language maps
programs to their trace semantics

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 68 © P.Cousot

Inductive definition

® Partial traces:
® A trace with one initial state is a partial trace

® A partial trace extended by a transition is a partial
trace

® Maximal traces:

® Finite traces with no extension by a transition

® |nfinite traces which prefixes are all partial traces

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 69 © P.Cousot

Fixpoint partial trace semantics

initial states of program P: init P
transitions of programs P: trans ||P]|

FU[P]|X ={s|seiinit|P] } u
{ oss' | os € X A ss'€ trans|P] }

St[P] = fp~ Ft[P]

70

Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

¢ o(X)c={m | do,0'. o{c;m)c' € X}

® Invariance semantics: Si|P] = o(S'[P])

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 7 I © P.Cousot

Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

o Si[P] = a(SY|P])c = {m | do,0'. o(c,m)c' € S|P}

#include <stdio.h>
int main() {
int x,y;
printf("Enter an integer: ");

{< > y = 3370 - 233}\/* L s Sﬁairg(.'("id';;&g;;{y = X;

{<$O, X, y> y = 3330 - 233},\/* oe w printf("x = %d, y = %d\n",Xx,y);
i)
{()

X X —1;
r k/ y y + 2;

y = 3x0- 2z -2} "7y

: k/ printf("x = %d, y = %d\n",x,y); }

y=3:60/\33:()}//*4

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 72 © P.Cousot

Calculations design of the verification conditions

o o(Ft[P]X)
= Xc.{m | do,0'. o{c,m)c' € X}

= FI[P[(a(X))
where Fi|P| are the Turing/Floyd/Naur/Hoare

verification conditions
e It follows that Si[P] = Ifp° Fi[P]

® The proof method is then by fixpoint induction (Tarski
1955)

73

Application to the
semantics
of programming languages

74

General idea

® All known semantics are abstractions of a most
precise semantics

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 75

© P.Cousot

Abstraction to denotational semantics

® The maximal trace semantics S™[P] (maximal finite

and infinite execution traces

® Denotational semantics abstraction:
e SUP] = a(S[P])
® o(X)=Ns{s'|do.sos' € X} U
{i|do.so... € X}

i.e. a map of initial states to the set of final states
plus | in case of non-termination

76 © P. Cousot

Hierarchy of abstractions

Hoa}re _on o
logics

weakest o ®
precondition T T
semantics
TEVP T' T

denotational ﬁ o o o
semantics T T T T

relational
semantics

trace
semantics

e

T __, abstraction

| | | | | ___ equivalence
angelic natural demoniac __ _restriction
deterministic infinite

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 77

© P.Cousot

idem for Prolog

ground
Herbrand
models
sem[P]
m
correct &
answers
c-models Hgmlirtld
call patterns
computed S'™M[P] D
answers Ser[P]
s-models ,
breadth- S™[P] instantiated @
lazy 'cut first ProLoG call pattorns
S'[F] sTLP] SP[P] se[pP] o SP[P] ground
most general o SISJEK-[HD?]GS
call patterns |
SP[P] P
“ instantiated
SLD-trees
SKIP] ground
most general deri\éations
SLD%trees ak ad See[P]
SK [[P]] «
instantiated
@ derivations
S'd [[P]]

most general
derivations

si[P]

® all semantics are abstractions of S°[P]

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 78

© P.Cousot

Conclusion

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 79 © P.Cousot

Abstract interpretation

® A well-developed theory, still in progress
® Active research e.g.

® abstract domains to handle e.g. complex data
structures

® abstraction of parallelism with weak memory
models

® applications to biology, ...

® |ndustrial-quality static analyzers

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 80

© P.Cousot

Industrialisation: Astree

Project Analysis

Editors Edit Tools

Help

BEEHO 242 000 ¢ H

Example 1: scenarios

€ Welcome
Configuration

O Preprocessor

%% Parser

/" Analyzer

A Annotations
Results

& Overview

4 Call graph

/. Reports
Files

astree.cfg

Preprocessed Original

(Project Summary Resource Monitor
Errors: 2
Alarms on code locations
Run-time errors: 7
Data flow anomalies: 0
Rule violations: 0
Alarms on memory locations
Data races: 0
Reached code: 100%
Duration: 20s

Analyzed file: db/invalid/path/scenarios.c Original source: src/scenarios.c

rflow. *

¥/

= SPEED_SENSOR;

'/o-’ cast causing ov Type cast causing overflow.

= SPEED_SENSOR H

Precise handling of pointer arithmetics. recise handling of pointer arithmetics.
%/ %/
ptr = &ArrayBlockl[0]; ptr = &ArrayBlock([0];

if (uninitialized 1) {

if (uninitialized 1) {
S ; ArrayBlock[15] = 0x15;
¥

// easy case

if (uninitialized_2) {
¥
O/E"*'Ou a".!'

xplicit LI/O;.CC
ab).

o* corr'o.‘u»mrw:n overflow ari
alarms on explicit f/O'“CE
Oogmn‘-:fen-"e' tab).

= (short)((unsigned short)vx + (unsigned short)vy

= (short)((unsigned short)vx + (unsigned short)vy
__ASTREE_assert((-2==z && z==2));

__ASTREE_assert((-2==z && z==2));
91
) a2

4 4
Line 81, column 7 Line 77, column 1

[call#Fmain@58 at scenarios.c:58.0-130.1

if@80=true at scenarios.c:80.4-82.5

ALARM (A): invalid dereference: dereferencing 1 byte(s) at offset(s) 15 may overflow the variable ArrayBlock of byte-size 10 at scenarios.c:81.6-20]

ERROR: Definite runtime error during assignment in this context. Analysis stopped for this context.

Filter: | ~ v || Typefiters | |Comment filters | 8 of 8 findings visible

Order Type Category Location
4 F Alarm (C) Out-of-bound array access # scenarios.c:81.17-19 out-of-bound array index {15} not incl

- Definite Alarm (A) |Possible overflow upon dereference |3 scenarios.c:81.6-20 -- invalid dereference: dereferencing 1 b;

F Alarm (A) # scenarios.c:84.8-23

Classification Comment

Use of uninitialized variables uninitialized read: reading 4 byte(s) at

F Definite Alarm (A) Possible overflow upon dereference = # scenarios.c:85.6-17 invalid dereference: dereferencing1 b

F Alarm (A) Assertion failure # scenarios.c:127.4-40

assert failure _ASTREE_assert((second o
»

A Output | W Findings 4 Notreached 4 Watch 4 Search \p

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 8 I

Industrialisation: Astree

Project Analysis Editrs Tools Help

BELEHO 2% 2 O0®0® €«» CN

Example 1: scenarios ‘Q Overview
€ Welcome
Configuration
O Preprocessor v Count Name

Findings/C l FindingsfF = Rule violatons = Reachability = Metrics = Data flow Filter

7 Alarms)
P Parser 3 Invalid usage of pointers and arrays Alarms (7 findings)

/" Analyzer 1 | Out-of-bound array access
A Annotations 2 Possible overflow upon dereference
1 Invalid ranges and overflows
SRt 1 F Overflow in conversion
1 Failed or invalid directives
4 Call graph 1 P Assertion failure
/. Reports 2 Uninitialized variables
2 P Use of uninitialized variables
2 Errors

* Overview

Files

Preprocessed Original

[callEmain@58 at scenarios.c:58.0-130.1
if@80=true at scenarios.c:80.4-82.5
ALARM (C): out-of-bound array index {15} not included in [0, 9] at scenarios.c:81.17-19]

Filter: | v | | Type fiters | |Comment filters | 8 of 8 findings visible

Type Category Location Classification C

[Project Summary Resource Monitor F Notification Invalid conversion # scenarios.c:73.4-20 translate_warning(type): conversion from floating-¢
Errors: 2 F Alarm (C) Overflow in conversion # scenarios.c:73.4-20 double->signed short conversion range [0, 40000] r
Alarms on code locations

Run-time errors: 7 F Alarm (A) Use of uninitialized variables # scenarios.c:80.8-23 uninitialized read: reading 4 byte(s) at offset(s) 0 in+

Tl s 2n Alarm (C) Out-of-bound array access B scenarios.c:81.17-19 -- out-of-bound array index {15} not included in [0, 9]
Rule violations: 0 |

Alarms on memory locations P Definite Alarm (&) Possible overflow upon dereference # scenarios.c:81.6-20 invalid dereference: dereferencing 1 byte(s) at offse

Data races: 0
- . 4 (05848~ - . . .
hed cod 100% F Alarm (A) Use of uninitialized variables scenarios.c:84.8-23 unlnltl.allzed read: reading 4 byte(s) at offset(s) 0 in =

Duration: 19s 4 2
Y X7 A Output | W Findings 4 Notreached A Watch A Search &

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 82 © P Cousot

Many other static analyzers

® Julia (Java) http://www.juliasoft.com
® |kos, NASA https://ti.arc.nasa.gov/opensource/ikos/

® Clousot for code contract, Microsoft, https://
github.com/Microsoft/CodeContracts

® |nfer (Facebook) http://fbinfer.com

® Zoncolan (Facebook)

® Google

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 83 © P.Cousot

Static analysis for software development

® Users of Astree:
@ ARBUS AREvVa (000 ebmpapst @cesa AN ...

® Why not all software developers use
static analysis tools?

84 © P. Cousot

Irresponsibility

® Computer engineering is the only technology where
developers are not responsible for their errors, even
the trivial ones:

DISCLAIMER OF WARRANTIES. ... MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF

, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. ...

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 85 © P.Cousot

The future

® Safety and security does matter to the general public

® Computer scientists will ultimately be held responsible
for there errors

® At least the automatically discoverable ones
® Since this is now part of the state of the art

® Automatic static analysis, verification, etc has a brilliant
future.

Abstract interpretation, SAVE |6, Changsha, |0 December 2016 86 © P.Cousot

Francesco Logozzo, designer of the Zoncolan static
analyzer at Facebook wrote me on 09/12/2016:

~ Finding people who really know static analysis
IS very hard, you should tell your students that if
they want a great job in a Silicon Valley company
they should study abstract interpretation not
JavaScript. Feel free to quote me on that ;-)”

87

Selected bibliography

e Patrick Cousot, Radhia Cousot:
Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. POPL 1977: 238-252
e Patrick Cousot, Nicolas Halbwachs:
Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96
e Patrick Cousot, Radhia Cousot:
Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
e Patrick Cousot, Radhia Cousot:
Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP 1992: 269-295
e Patrick Cousot:
Types as Abstract Interpretations. POPL 1997: 316-331
e Patrick Cousot, Radhia Cousot:
Temporal Abstract Interpretation. POPL 2000: 12-25
e Patrick Cousot, Radhia Cousot:
Systematic design of program transformation frameworks by abstract interpretation. POPL 2002: 178-190
e Patrick Cousot:
Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103
(2002)
e Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival:
A static analyzer for large safety-critical software. PLDI 2003: 196-207
e Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival:
The ASTREE Analyzer. ESOP 2005: 21-30
e Patrick Cousot, Radhia Cousot, Roberto Giacobazzi:
Abstract interpretation of resolution-based semantics. Theor. Comput. Sci. 410(46): 4724-4746 (2009)
e Patrick Cousot, Radhia Cousot:
An abstract interpretation framework for termination. POPL 2012: 245-258
e Patrick Cousot, Radhia Cousot:
A Galois connection calculus for abstract interpretation. POPL 2014: 3-4
e Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival:
Static Analysis and Verification of Aerospace Software by Abstract Interpretation. Foundations and Trends in Programming Languages
2(2-3): 71-190 (2015)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 88 © P.Cousot

The End, Thank You

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 89 © P Cousot

