
Impact-Driven Research on
Software Testing and Analysis Tools:

Getting Real

Tao Xie
University of Illinois

at Urbana-Champaign

taoxie@illinois.edu

mailto:taoxie@illinois.edu

Successful Samples: Research  Practice

2

…

MSR SAGE

ASTRÉE

Statechart
SPIN

Springfield

Tricorder/Shipshape

MSRA MSRA

CAV Awards

• 2016: Separation logic (Facebook Infer)

• 2013: UPPAAL

• 2012: PVS

• 2011: SLAM/SDV

• 2010: Cadence SMV

• …

3

http://i-cav.org/cav-award

https://www.research.ibm.com/haifa/conferences/hvc2016/award.shtml

http://i-cav.org/cav-award
https://www.research.ibm.com/haifa/conferences/hvc2016/award.shtml

ACM Software System Awards

• 2013: Coq

• 2012: LLVM

• 2007: Statemate

• 2006: Eiffel

• 2005: Boyer-Moore Theorem Prover

• 2001: SPIN

• …

4http://awards.acm.org/software_system/year.cfm

http://awards.acm.org/software_system/year.cfm

NSF Workshop on Formal Methods

• Goal: to identify the future directions in research in
formal methods and its transition to industrial practice.

• The workshop brought together researchers and
identified primary challenges in the field, both
foundational, infrastructural, and in transitioning ideas
from research labs to developer tools.

http://goto.ucsd.edu/~rjhala/NSFWorkshop/

December 2012

http://goto.ucsd.edu/~rjhala/NSFWorkshop/

NSF Workshop on Formal Methods

• Successes

• Unrealized Successes

• Obstacles

• Future Directions

http://goto.ucsd.edu/~rjhala/NSFWorkshop/static/survey.pdf

December 2012

http://goto.ucsd.edu/~rjhala/NSFWorkshop/static/Questions.md

http://goto.ucsd.edu/~rjhala/NSFWorkshop/static/survey.pdf
http://goto.ucsd.edu/~rjhala/NSFWorkshop/static/Questions.md

Getting Real to Produce Practice Impact

7

Making real
impact

Building real
technologies

Solving real
problems

Software testing/analysis tools are naturally tied
with software development practice

Industry Academia Collaboration

• Academia (research recognitions, e.g., papers) vs.
Industry (company revenues)

• Academia (invention/innovation) vs. Industry (likely
involving engineering efforts)

• Academia (long-term/fundamental research or out
of box thinking) vs. Industry (short-term research or
work)

• Industry: problems, infrastructures, data, evaluation
testbeds, …

• Academia: educating students, …

Getting Real to Produce Practice Impact

9

Making real
impact

Building real
technologies

Solving real
problems

Software testing/analysis tools are naturally tied
with software development practice

Google Scholar: “Pointer Analysis”

“Pointer Analysis: Haven’t We Solved This
Problem Yet?” [Hind PASTE’01]

11

“During the past 21 years, over 75 papers and 9
Ph.D. theses have been published on pointer
analysis. Given the tones of work on this topic
one may wonder, “Haven't we solved this
problem yet?'' With input from many
researchers in the field, this paper describes
issues related to pointer analysis and remaining
open problems.”

Michael Hind. Pointer analysis: haven't we solved this problem yet?. In Proc.
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2001) Source©M. Hind

“Pointer Analysis: Haven’t We Solved This
Problem Yet?” [Hind PASTE’01]

12

Section 4.3 Designing an Analysis for a Client’s Needs

“Barbara Ryder expands on this topic: “… We can all write
an unbounded number of papers that compare different
pointer analysis approximations in the abstract.
However, this does not accomplish the key goal, which is

to design and engineer pointer analyses that are useful
for solving real software problems for realistic
programs.”

Michael Hind. Pointer analysis: haven't we solved this problem yet?. In Proc.
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2001) Source©M. Hind&B. Ryder

Google Scholar: “Clone Detection”

Typically focus/evaluate on
intermediate steps (e.g., clone
detection) instead of ultimate
tasks (e.g., bug detection or
refactoring), even when the
field already grows mature
with n years of efforts on

intermediate steps

Some Success Stories of Applying
Clone Detection [Focus on Ultimate Tasks]

14

Zhenmin Li, Shan Lu, Suvda Myagmar, and
Yuanyuan Zhou. CP-Miner: a tool for finding
copy-paste and related bugs in operating
system code. In Proc. OSDI 2004.

MSRA
XIAO

Yingnong Dang, Dongmei Zhang, Song Ge,
Chengyun Chu, Yingjun Qiu, and Tao Xie.
XIAO: Tuning Code Clones at Hands of
Engineers in Practice. In Proc. ACSAC 2012,

http://patterninsight.com/

http://www.blackducksoftware.com/

http://research.microsoft.com/en-us/groups/sa/

http://patterninsight.com/
http://www.blackducksoftware.com/
http://research.microsoft.com/en-us/groups/sa/

XIAO Usage: MS security bulletin MS12-034

Combined security update for Microsoft Office, Windows, .NET Framework, and
Silverlight, published: Tuesday, May 08, 2012

3 publicly disclosed vulnerabilities and seven privately reported involved.
Specifically, one is exploited by the Duqu malware to execute arbitrary code
when a user opened a malicious Office document.

Insufficient bounds check within the font parsing subsystem of win32k.sys

Cloned copy in gdiplus.dll, ogl.dll (office), Silverlight, and Windows Journal viewer

Microsoft Security Research & Defense Blog about this bulletin

“However, we wanted to be sure to address the vulnerable code wherever it
appeared across the Microsoft code base. To that end, we have been working
with Microsoft Research to develop a “Cloned Code Detection” system that we
can run for every MSRC case to find any instance of the vulnerable code in any
shipping product. This system is the one that found several of the copies of CVE-
2011-3402 that we are now addressing with MS12-034.”

15
http://blogs.technet.com/b/srd/archive/2012/05/08/ms12-034-duqu-ten-cve-s-and-removing-keyboard-layout-file-attack-surface.aspx

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Trojan:Win32/Duqu.C
http://blogs.technet.com/b/srd/archive/2012/05/08/ms12-034-duqu-ten-cve-s-and-removing-keyboard-layout-file-attack-surface.aspx
http://blogs.technet.com/b/srd/archive/2012/05/08/ms12-034-duqu-ten-cve-s-and-removing-keyboard-layout-file-attack-surface.aspx

Trying Real Tool – Parasoft Jtest 5.0

Test 1 (T1):

BST t1 =

new BST();

t1.insert(2);

t1.insert(1);

t1.remove(1);

t1.insert(3);

t1.size();

Test 2 (T2):

BST t2 =

new BST ();

t2.insert(2);

t2.insert(3);

Test 3 (T3):

BST t3 =

new BST ();

t3.insert(2);

t3.insert(1);

t3.size();

Approach using method sequence removes
no tests

Rostra removes T2 and T3 because
T2 and T3 are redundant w.r.t. T1

Back in Year 2004

Redundancy among Jtest-Generated Tests

 90% of generated tests are redundant!

 Minimized tests preserve the same code (branch) coverage and

seeded-bug coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
tS

ta
ck

U
B
S
ta

ck

S
ho

pp
in
gC

art

B
an

kA
cc

oun
t

B
in
S
ea

rc
hT

re
e

B
in
om

ia
lH

eap

D
is
jS

et

Fib
on

ac
ci
H
ea

p

H
ash

M
ap

Li
nk

ed
Lis

t

Tre
eM

ap

Back in Year 2004

Industry Impact ― Parasoft Jtest

• People do use Jtest
• Recognized with numerous awards, including Jolt Product Excellence

Award and JDJ Editor's Choice Award in 2004; adopted by thousands
of development teams worldwide.

― businesswire.com

• But didn’t seem to love its test generation
• “I can't think of anyone telling me that they love Jtest's test-

generating feature.”

―Joe Rainsberger, JUnit book author, 02/05@junit user mailing list

Parasoft VP contacted me informing me that they incorporated our
new techniques into Jtest's later versions!

Back in Year 2004

Getting Real to Produce Practice Impact

19

Making real
impact

Building real
technologies

Solving real
problems

Software testing/analysis tools are naturally tied
with software development practice

From http://bbcode.codeplex.com/NUnit Extension – 13024 downloads

xUnit.net Extension - 8589 downloads

Pex to IntelliTest
Shipped in Visual Studio 2015 Enterprise Edition!

http://bbcode.codeplex.com/
https://visualstudiogallery.msdn.microsoft.com/bd30bf3f-4183-4b00-a245-1875316b8cd3
https://visualstudiogallery.msdn.microsoft.com/bf74d890-a81e-4e49-beb7-1ad3a4e012af

There are decision procedures for individual path
conditions, but…

• Number of potential paths grows exponentially with
number of branches

• Reachable code not known initially

• Without guidance, same loop might be unfolded forever

Fitnex search strategy

[Xie et al. DSN 09]

(Dynamic) Symbolic Execution (DSE):
Explosion of Search Space

http://taoxie.cs.illinois.edu/publications/dsn09-fitnex.pdf

http://taoxie.cs.illinois.edu/publications/dsn09-fitnex.pdf

DSE Example

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

TestLoop(0, {0})

Path condition:
!(x == 90)

↓
New path condition:
(x == 90)

↓
New test input:
TestLoop(90, {0})

DSE Example

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

TestLoop(90, {0})

Path condition:
(x == 90) && !(y[0] ==15)

↓
New path condition:
(x == 90) && (y[0] ==15)

↓
New test input:
TestLoop(90, {15})

Challenge in DSE

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

TestLoop(90, {15})

Path condition:
(x == 90) && (y[0] ==15)
&& !(x+1 == 110)

↓
New path condition:
(x == 90) && (y[0] ==15)
&& (x+1 == 110)

↓
New test input:
No solution!?

A Closer Look

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

TestLoop(90, {15})

Path condition:
(x == 90) && (y[0] ==15)
&& (0 < y.Length)
&& !(1 < y.Length)
&& !(x+1 == 110)

↓
New path condition:
(x == 90) && (y[0] ==15)
&& (0 < y.Length)
&& (1 < y.Length)
 Expand array size

A Closer Look

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

TestLoop(90, {15})

We can have infinite paths!

Manual analysis  need at
least 20 loop iterations to
cover the target branch

Exploring all paths up to 20
loop iterations is infeasible:

220 paths

Fitnex: Fitness-Guided Exploration

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

Key observations: with respect to the coverage
target

• not all paths are equally promising for
branch-node flipping

• not all branch nodes are equally
promising to flip

• Our solution:

– Prefer to flip branch nodes on the most promising paths

– Prefer to flip the most promising branch nodes on paths

– Fitness function to measure “promising” extents

TestLoop(90, {15, 0})
TestLoop(90, {15, 15})

[Xie et al. DSN 2009]

Fitness Function

• FF computes fitness value (distance between the
current state and the goal state)

• Search tries to minimize fitness value

[Tracey et al. 98, Liu at al. 05, …]

Fitness Function for (x == 110)

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

Fitness function: |110 – x |

Compute Fitness Values for Paths

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

(90, {0}) 20
(90, {15}) 19
(90, {15, 0}) 19
(90, {15, 15}) 18
(90, {15, 15, 0}) 18
(90, {15, 15, 15}) 17
(90, {15, 15, 15, 0}) 17
(90, {15, 15, 15, 15}) 16
(90, {15, 15, 15, 15, 0}) 16
(90, {15, 15, 15, 15, 15}) 15
…

Fitness Value(x, y)

Fitness function: |110 – x |

Give preference to flip paths with better fitness values
We still need to address which branch node to flip on paths …

Compute Fitness Gains for Branches

public bool TestLoop(int x, int[] y) {

if (x == 90) {

for (int i = 0; i < y.Length; i++)

if (y[i] == 15)

x++;

if (x == 110)

return true;

}

return false;

}

(90, {0}) 20
(90, {15})  flip b4 19
(90, {15, 0})  flip b2 19
(90, {15, 15})  flip b4 18
(90, {15, 15, 0})  flip b2 18
(90, {15, 15, 15})  flip b4 17
(90, {15, 15, 15, 0})  flip b2 17
(90, {15, 15, 15, 15})  flip b4 16
(90, {15, 15, 15, 15, 0})  flip b2 16
(90, {15, 15, 15, 15, 15})  flip b4 15
…

Fitness Value(x, y)

Fitness function: |110 – x |

Branch b1: i < y.Length
Branch b2: i >= y.Length
Branch b3: y[i] == 15
Branch b4: y[i] != 15

•Flipping Branch b4 (b3) gives us average 1 (-1)
fitness gain (loss)
•Flipping branch b2 (b1) gives us average 0
fitness gain (loss)

Compute Fitness Gain for Branches cont.

• For a flipped node leading to Fnew, find out the old
fitness value Fold before flipping

• Assign Fitness Gain (Fold – Fnew) for the branch of the
flipped node

• Assign Fitness Gain (Fnew – Fold) for the other branch of
the branch of the flipped node

• Compute the average fitness gain for each branch over
time

Search Frontier

• Each branch node candidate for being flipped is
prioritized based on its composite fitness value:

• (Fitness value of node – Fitness gain of its branch)

• Select first the one with the best composite fitness value

To avoid local optimal or biases, the
fitness-guided strategy is integrated
with Pex’s fairness search strategies

http://taoxie.cs.illinois.edu/publications/dsn09-fitnex.pdf

http://taoxie.cs.illinois.edu/publications/dsn09-fitnex.pdf

Automated Test Input Generation for Android:
Are We Really There Yet in an Industrial Case?

Xia Zeng1 Dengfeng Li2 Wujie Zheng1 Fan Xia1 Yuetang Deng1 Wing Lam2 Wei Yang2 Tao Xie2

1Tencent, Inc., China 2University of Illinois at Urbana-Champaign, USA

FSE Industry 2016

34

http://taoxie.cs.illinois.edu/publications/fse16industry-wechat.pdf

http://taoxie.cs.illinois.edu/publications/fse16industry-wechat.pdf

Motivation

 Choudhary et al. [ASE’15]: Do we have good-enough
tools to test Android apps?
• Evaluated six research tools and Monkey
• Monkey tool outperformed all six research tools

 Their study can be further extended
• No industrial-strength Android app was studied
• No demonstration on whether and how techniques

can further improve Monkey under industrial settings

35

 Challenges for code coverage measurement:
 Requiring app’s source code
 Industrial-strength Android app can cause 64K

reference limit exception during
instrumentation

 Challenges for applicability:
 Scalability on testing apps with large codebases
 OS compatibility of testing tool

Challenges on
Testing Industrial Mobile Apps

36

WeChat Overview

 WeChat = WhatsApp+Facebook+Instagram+PayPal+Uber…
 846 million monthly active users
 Daily number: dozens of billion messages sent, hundreds

of million photos uploaded, hundreds of million payment
transactions executed

 WeChat backend: 2K+ microservices running on 40k+
servers
 10M queries per second during Chinese New Year Eve

 Large codebase on WeChat Android

37

Monkey: Experimental setup

 Experiment Setup
• Set Monkey to fire random events every 500

milliseconds
• Run Monkey on WeChat 5 times independently
• Run Monkey for 18 hours each time (2 hours

without login)

 Evaluation Metric
• Line coverage
• Activity coverage

38

Monkey: Coverage Result Findings

Finding 1: Monkey has low

line coverage (19.5%) and low

activity coverage (10.3%). s

Finding 2: Monkey
allocates a lopsided
distribution of exploration
time on each activity.

39

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
o
ve
ra
ge

Pe
rc
e
n
ta
ge

Exploration	Time	(hours)

Line	Coverage	- Monkey

Activity	Coverage	- Monkey

Manually login

Monkey: Exploration time challenges

 Widget obliviousness: It is difficult to generate events at the
small-sized GUI element

 State obliviousness: Monkey explores the same two activities
repeatedly without contributing to new code coverage

To another activity

Back to other activities.

SelectContactUI ContactLabelUI

40

New Approach

 Design goals
• Have direct access to UI elements on activity under test
• Allocate more exploration time towards new GUI states

 Techniques
• Use UIAutomator framework to gain UI layout tree
• Abstract GUI states to guide firing of state-changing

events

41

New Approach: Coverage result

New approach covers an additional 11.1% p.p. more lines and
18.4% p.p. more activities than Monkey does! 42

Human Intervention

 Provide client-to-client interaction
• Line coverage increases 1.9% p.p.
• Activity coverage increases 0.6% p.p..

 Provide additional app events
• Line coverage increases 0.8% p.p.
• Activity coverage increases 0.8% p.p.

 Human intervention doesn’t help much

0

5

10

15

20

25

30

35

Co
ve
ra
ge
	P
er
ce
n
ta
g
e

43

Ongoing/Future Work

 Incorporating fine-grained code analysis
• Construct activity transition graph to guide the tools to

explore not-covered activities

 Reusing exploration paths
• Extracting relevant paths from explored paths and

reusing them to boost tools’ effectiveness

 Conducting residual coverage analysis
 Getting out of stuck states with manually written

rules

44

Summary

 First industrial case study of applying Monkey
on WeChat

 Empirical findings on Monkey’s limitations in an
industrial setting

 A new approach that addresses the major
limitations of Monkey and accomplished
substantial code-coverage improvements

 Empirical insights for future enhancements for
both Monkey and our approach

45

Learning for Test Prioritization
An Industrial Case Study

Benjamin Busjaeger

Salesforce

Tao Xie

University of Illinois,

Urbana-Champaign

FSE 2016 Industry Track

http://taoxie.cs.illinois.edu/publications/fse16industry-learning.pdf

http://taoxie.cs.illinois.edu/publications/fse16industry-learning.pdf

Large Scale Continuous Integration

2K+
Modules

600K+
Tests

2K+
Engineers

500+
Changes/Day

Main repository ...

350K+
Source files

Motivation

Before Commit After Commit

Objective Reject faulty changes Detect test failures as quickly as
possible

Current Run hand-picked tests Parallelize (8000 concurrent VMs) &
batch (1-1000 changes per run)

Problem Too complex for human Feedback time constrained by capacity
& batching complicates fault
assignment

Desired Select top-k tests likely to fail Prioritize all tests by likelihood of failure

Insight: Need Multiple Existing Techniques

● Heterogeneous languages: Java, PL/SQL, JavaScript,
Apex, etc.

●Non-code artifacts: metadata and configuration
●New/recently-failed tests more likely to fail

Test code coverage of change Textual similarity between test and
change

Test age and recent failures

Insight: Need Scalable Techniques
●Complex integration tests: concurrent execution
●Large data volume: 500+ changes, 50M+ test runs, 20TB+ results per

day

→ Our approach: Periodically collect coarse-grained measurements

Test code coverage of change Textual similarity between test and change Test age and recent failures

model for learning
from past test
results

New Approach:
Learning for Test Prioritization

Test code coverage of change Textual similarity between test and change Test age and recent failures

Change

Test Ranking

→ Implementation currently in pilot use at Salesforce

Empirical Study: Setup

●Test results of 45K tests for ~3 month period
●In this period, 711 changes with ≥1 failure

• 440 for training
• 271 for testing

●Collected once for each test:
• Test code coverage
• Test text content

●Collected continuously:
• Test age and recent failures

● New approach achieves highest average recall at all cutoff points
• 50% failures detected with top 0.2%
• 75% failures detected with top 3%

Results: Test selection (before commit)
New Approach

● New approach achieves highest APFD with least variance
• Median: 85%
• Average: 99%

Results: Test prioritization (after commit)
New Approach

Summary

● Main insights gained in conducting test prioritization in
industry

● Novel learning-based approach to test prioritization

● Implementation currently in pilot use at Salesforce

● Empirical evaluation using a large Salesforce dataset

Getting Real to Produce Practice Impact

56

Making real
impact

Building real
technologies

Solving real
problems

Software testing/analysis tools are naturally tied
with software development practice

MSRA
XIAO

Thank you! Questions?

57

Getting Real to Produce Practice Impact

58

Making real
impact

Building real
technologies

Solving real
problems

Software testing/analysis tools are naturally tied
with software development practice

MSRA
XIAO

