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Motivation

I Divergence: existence of infinite internal computation
sequences, an important semantic issue

- termination
- progress property: eventually one of the pending

procedure calls will be returned

I Bisimulation: a corner stone in concurrency theory

- it has been successfully used to define semantic
equivalences of various abstraction levels

- it provides verification methods (bisimulation
techniques) for these equivalences. Some equivalences
are useful in program verifications:

≈ with weak bisimulation method
≈b with branching bisimulation method
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Motivation

I However, divergence is not preserved by some popular
bisimulation equivalences including weak bisimilarity ≈
and branching bisimilarity ≈b

Figure: Divergence is not preserved by ≈ and ≈b
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Motivation

I Usual solution: treat divergence as a basic observation
and strengthen the definitions to obtain

- divergence preserving weak bisimilarity ≈⇑ (dates back
to Hennessy and Plotkin 1980):
if s ≈⇑ t then
. . . (the action matching requirment)
and moreover: s ⇑ if and only if t ⇑

- branching bisimularity with explicit divergence ≈∆
b (van

Glabbeek and Weijland 1996):
if s ≈∆

b t then
. . . (the action matching requirment)
and moreover: s ⇑≈∆

b
if and only if t ⇑≈∆

b
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Motivation

I A recent work by Xiaoxiao Yang et al. proposed an
original idea of using ≈∆

b to prove correctness and
progress of concurrent objects, and developed a set of
methods supported by many significant case studies to
illustrate the idea. Their work shows that divergence
preserving bisimulation equivalences can be used in
verifying correctness and progress of concurrent objects.

I Question: What more needs to be done?
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Motivation

I Problem: because divergence is not a primitive
observation (the outcome of a primitive observation
should at least be decidable), it is difficult to device a
verification method for an equivalence containing
non-primitive observations.
for all (s, t) ∈ R the following hold

- if s
α−→ s′ then t

α̂
=⇒ t′ and (s′, t′) ∈ R with t′;

- if s ⇑ then t ⇑;
- . . .

Thus with the current description of divergence
preservation, the divergence preserving bisimulation
equivalences are not supported by verification methods.
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Motivation

I Our idea for solving the problem: introduce induction
into the notion of bisimulation to identify pairs of
states which have the same divergence behaviour.

The hope is that with this solution we may only
consider (internal) transitions as basic observations
(they are clearly primitive), then it is easy to device a
kind of bisimulation technique which is good for
verification.
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Summary of results

We develop this idea and obtain the following results:

- introduce a new divergence sensitive weak bisimulation
equivalence, weak bisimilarity with explicit divergence
≈∆, characterized by inductive weak bisimulation.

- provide inductive characterizations (thus verification
methods) for two known divergence-sensitive equalities:
branching bisimilarity with explicit divergence ≈∆

b , and
divergence preserving weak bisimilarity ≈⇑.

- introduce complete weak (branching) bisimulation, a
very useful theoretical notion which builds connections
for different notions.

- verify the correctness of HSY collision stack using the
proposed bisimulation technique, which demonstrates
that the technique is not over restrictive.
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Weak bisimulation

A binary relation R ⊆ S × S on states of an LTS is a weak
bisimulation if for all (s, t) ∈ R the following hold:

1. whenever s
α−→ s′ then ∃(s′, t′) ∈ R. t α̂

=⇒ t′;

2. whenever t
α−→ t′ then ∃(s′, t′) ∈ R. s α̂

=⇒ s′.

weak bisimilarity, written ≈, is defined by

≈ =
⋃
{R |R is a weak bisimulation}.

Theorem

1. ≈ is an equivalence relation, and

2. it is the largest weak bisimulation.

The proof of this theorem is a routine application of
Knaster-Tarski fixed-point theorem.
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Weak bisimulation

I ≈ is not divergence preserving.

For an equivalence ≡, write s ⇑≡ if there is an infinite
sequence s1s2 . . . such that s

τ−→ s1, si
τ−→ si+1 and

si ≡ s for i ≥ 1.
A simple fact: for an equivalence relation ≡ which is a
weak bisimulation, if ≡ preserves ⇑≡ then it preserves
divergence (⇑).
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Weak bisimulation with explicit divergence

An equivalence relation ≡ is called a weak bisimulation with
explicit divergence if it is a weak bisimulation, and moreover
whenever s ≡ t then s ⇑≡ if and only if t ⇑≡.
Now we may define weak bisimilarity with explicit
divergence, written ≈∆, as

≈∆ =
⋃
{≡ | ≡ is a weak bisim. with explicit div.}.

Theorem

1. ≈∆ an equivalence relation, and moreover

2. it is the largest weak bisim. with explicit divergence.

Proof needed! (Here, Knaster-Tarski fixed point theorem is
no longer applicable.)
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Complete weak bisimulation

A binary relation R ⊆ S × S on states of an LTS is a
complete weak bisimulation if R is a weak bisimulation and
moreover for all (s, t) ∈ R the following hold:

3 whenever s =⇒ω D then ∃E. t =⇒ω E & D wR E;

4 whenever t =⇒ω E then ∃D. s =⇒ω D & D vR E;
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Complete weak bisimulation

Notation

I s =⇒ω D if there is an infinite τ -run which passes D
infinitely often

I D wR E for all t ∈ E there is s ∈ D such that (s, t) ∈ R
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Complete weak bisimulation

Complete weak bisimilarity, written ≈c, is defined by

≈c =
⋃
{R |R is a complete weak bisimulation}.

Theorem

1. ≈c is an equivalence relation, and

2. it is the largest complete weak bisimulation.

Lemma

Closed under composition: If R1, R2 are complete weak
bisimulations, then R1 ·R2 is a complete weak bisimulation.

Lemma

Closed under union: If {Ri}I is a set of comp. weak
bisimulations, then

⋃
{Ri | i ∈ I} is a comp. weak bisim.
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Inductive weak bisimulation

For a binary relation R ⊆ S × S on states of a LTS, let I(R)
be the smallest binary relation closed in the sense that for
s, t ∈ S, if the following hold then (s, t) ∈ I(R):

1. whenever s
τ−→ s′ then either there exists t′ ∈ S such

that t
τ

=⇒ t′ and (s′, t′) ∈ R, or (s′, t) ∈ R ∩ I(R);

2. whenever t
τ−→ t′ then . . . .

s
τ−→ s′ s

τ−→ s′

| | | /

s
τ−→ s′ : R or R ∩ I(R)

| | | /

t
τ

=⇒ t′ t
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Inductive weak bisimulation

I(R) is inductively defined, intuitively it captures those
pairs which have the same divergence behaviour with
respect to R.
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Inductive weak bisimulation

A relation R is an inductive weak bisimulation if it is a
weak bisimulation and moreover R ⊆ I(R).
Inductive weak bisimilarity, written ≈i, is defined by

≈i =
⋃
{R |R is an inductive weak bisimulation}.

Theorem

1. ≈i is an equivalence relation, and

2. it is the largest inductive weak bisimulation.

1. needs to be proved. 2. follows from the following lemma.

Lemma

Closed under union: If {Ri}I is a set of ind. weak
bisimulations, then

⋃
{Ri | i ∈ I} is an ind. weak bisim.
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A brief summary of the notions

We have defined three notions of weak bisimulation,
corresponding to three relations

1. ≈∆ =
⋃
{≡ | ≡ is a weak bisim. with explicit div.}

≈∆ is an equivalence(?)
≈∆ is a weak bisimulation with explicit divergence(?)

2. ≈c =
⋃
{R |R is a complete weak bisimulation}

≈c is an equivalence
≈c is a complete weak bisimulation.

3. ≈i =
⋃
{R |R is an ind. weak bisimulatoin}

≈i is an equivalence(?)
≈i is an inductive weak bisimulation.
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Characterization theorem

To answer the questions we study properties of and the
relationships among the notions

Lemma

W(≈c) is a complete weak bisimulation, where

W(≈c) = {(s, t)|whenever s
α−→ s′ then t

α̂
=⇒ t′&s′ ≈c t′

whenever t
α−→ t′ then s

α̂
=⇒ s′&s′ ≈c t′}.

Thus W(≈c) = ≈c.

≈c satisfies the following so-called stuttering property or
computation lemma.

Lemma

If s =⇒ t =⇒ s′, s ≈c s′, then (s, t) ∈ W(≈c), thus s ≈c t.
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Characterization theorem

Lemma

If s ≈c t and s ⇑≈c, then t ⇑≈c. Thus ≈c is a weak
bisimulaiton with explicit divergence.

Lemma

1. Every weak bisim. w. expl. div. is an ind. weak bisim.

2. Every ind. weak bisimulation is a complete weak bisim.
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Characterization theorem

weak bisim. with explicit div.
↓

ind. weak bisim. ↑
↓

comp. weak bisim. ⊆ ≈c

Theorem

≈c and ≈∆ and ≈i coincide.

Proof. ≈c is a weak bisim. w. expl. div. ⇒ ≈c⊆≈∆. Every
weak bisim. w. expl. div. is an ind. weak bisim. ⇒ ≈∆⊆≈i.
Every ind. weak bisim. is a comp. weak bisim. ⇒ ≈i⊆≈c.
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Characterization theorem

This theorem can answer the three early questions:

1. ≈∆ is an equivalence.

2. ≈∆ is a weak bisimulation with explicit divergence.

3. ≈i is an equivalence.

The three notions provide three different perspectives for
the understanding of the equivalence relation:

1. weak bisim. with explicit div. is simple and direct;

2. comp. weak bisim. is theoretically powerful;

3. inductive weak bisimulation is verification friendly.
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Inductive branching bisimulation

The same approach can be applied to branching
bisimulation to obtain inductive characterization of
branching bisimilarity with explicit divergence

1. ≈∆
b =

⋃
{≡ | ≡ is a bran. bisim. with explicit div.}

≈∆
b is an equivalence
≈∆
b is a branching bisimulation with explicit divergence

2. ≈cb =
⋃
{R |R is a complete bran. bisim.}

≈cb is an equivalence
≈cb is a complete branching bisimulation.

3. ≈ib =
⋃
{R |R is an ind. bran. bisim.}

≈ib is an equivalence(?)
≈ib is an inductive branching bisimulation.
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Inductive branching bisimulation

branching bisim. with explicit div.
↓

ind. branching bisim. ↑
↓

comp. branching bisim. ⊆ ≈cb

Theorem

≈∆
b and ≈cb and ≈ib coincide.
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Divergence preserving weak bisimulation

A binary relation R is called a divergence preserving weak
bisimulation if

1. R is a weak bisimulation

2. for all (s, t) ∈ R: s ⇑ if and only if t ⇑.

Divergence preserving weak bisimilarity, written ≈⇑, is
defined by

≈⇑ =
⋃
{R|R is a divergence preserving weak bisimulation}.

Theorem

1. ≈⇑ is an equivalence relation, and

2. it is the largest divergence preserving weak bisimulation.

Theorem

≈∆
b ⊆ ≈∆ ⊆≈⇑.
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Generalized inductive weak bisimulation

A set of states D ⊆ S is called a divergence set if for all
s ∈ D there is s′ ∈ D such that s

τ
=⇒ s′.

A relation R is a generalized inductive weak bisimulation if
R is a weak bisimulation and moreover there is a divergence
set D such that R ⊆ (I(R) ∪D×D).

Obviously, generalized inductive weak bisimulation is a
generalization of inductive weak bisimulation: every
inductive weak bisimulation is also a generalized one.

Theorem

For s, t ∈ S, s ≈⇑ t if and only if there is a generalized
inductive weak bisimulation R such that (s, t) ∈ R.
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A verification example

type Node = { val: Val,

next: ptr to Node}
Top: ptr to Node

push(v: Val) =

E0 n: ptr to Node := newNode()

E1 atomic {
E2 n-> val := v

E3 n->next := Top

E4 Top := n

E5 }
E6 return

Figure: Pseudo-code for lock-free stack specification using atomic
blocks
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A verification example

pop(): Val =

F0 atomic {
F1 n:ptr to Node:= Top

F2 if n <> null then

F3 {Top:=n->next
F4 v: Val :=n-> val

F5 }
F6 }
F7 if n = null then

F8 return empty

F9 else

F10 return v

F11 fi

Figure: Pseudo-code for lock-free stack specification using atomic
blocks
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Transitions of thread with atomic blocks

〈H,M, (t, EFidle,m)〉 (t,call push(d))−→ 〈H,M, (t, E0,m[v 7→ d])〉
〈H,M, (t, E0,m)〉 τ−→ 〈H ] [q 7→ {Val : ⊥, next : null}],

M, (t, E1,m[n 7→ q])〉
〈H[q 7→ {Val : d, next : r}], 〈H[q 7→ {Val : m(v), next : M(Top)})],

M, (t, E1,m[n 7→ q])〉 τ−→ M [Top 7→ q], (t, E6,m[n 7→ q])〉
〈H,M, (t, E6,m)〉 (t,ret()push)−→ 〈H,M, (t, EFidle,m)〉
〈H,M, (t, EFidle,m)〉 (t,call pop())−→ 〈H,M, (t, F0,m)〉
〈H,M, (t, F0,m)〉 τ−→ 〈H,M, (t, F7,m[n 7→ null])〉 (M(Top) = null)

〈H,M, (t, F7,m)〉 τ−→ 〈H,M, (t, F8,m)〉 (m(n) = null)

〈H,M, (t, F8,m)〉 (t,ret(empty)pop)−→ 〈H,M, (t, EFidle,m)〉
〈H[p7→ {Val : d, next : q}], 〈H,M [Top 7→q],

M [Top 7→ p], (t, F0,m)〉 τ−→ (t, F7,m[v 7→ d, n 7→ p])〉
〈H,M, (t, F7,m)〉 τ−→ 〈H,M, (t, F10,m)〉 (m(n) 6= null)

〈H,M, (t, F10,m)〉 (t,ret(m(v))pop)−→ 〈H,M, (t, EFidle,m)〉
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type Node = { val: Val,

next: ptr to Node}
Top: ptr to Node

type Op=enum{NONE,PUSH,POP}
type opInfo={op:OP,

node:ptr to Node}
opInfos: array[numprocs] of opInfo

collision: array[size] of ProcessId

push(v: Val) =

A0 n: ptr to Node := newNode()

A1 n-> val := v

A2 info: opInfo :=(PUSH,n)

A3 loop

A4 if tryPush(n) then exit

A5 if tryElimination(& info) then exit

A6 endloop

A7 return
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tryPush(n:ptr to Node):boolean=

C1 ss:ptr to Node := Top

C2 n->next:= ss

C3 return CAS(&Top, ss, n)
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pop(): Val =

B0 info: opInfo:=(POP,null)

B1 loop

B2 if tryPop(info.node) then exit

B3 if tryEliminate(&info) then exit

B4 endloop

B5 if info.node=null then

B6 return empty

B7 else

B8 v: Val:=info.node-> val

B10 return v

B11 fi
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tryPop(n:ptr to Node): boolean=

D1 ss: ptr to Node:= Top

D2 if ss=null then

D3 n:=null

D4 return true

D5 else

D6 n:= ss

D7 ssn: ptr to Node:= ss-> next

D8 return CAS(&Top, ss, ssn)

D9 fi
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A verification example

〈H,M, (ti, li,mi)〉
α−→ 〈H ′,M ′, (ti, l′i,m′i)〉

〈H,M, . . . (ti, li,mi) . . .〉
α−→ 〈H ′,M ′, . . . (ti, l′i,m′i) . . .〉

We need to establish:
〈ε,M, . . . (ti, ABidle,mi) . . .〉 ≈∆ 〈ε,M, . . . (ti, EFidle,mi) . . .〉

For that we construct an inductive weak bisimulation R
which contains
(〈ε,M, . . . (ti, ABidle,mi) . . .〉, 〈ε,M, . . . (ti, EFidle,mi) . . .〉).
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A verification example

R is defined such that

(〈H,M, (t1, l1,m1) . . . (tn, ln,mn)〉,
〈H ′,M ′, (t1, l′1,m′1) . . . (tn, l

′
n,m

′
n)〉) ∈ R

if and only if the following hold:

1. 〈H,M, (t1, l1,m1) . . . (tn, ln,mn)〉 is a type AB
configuration which is reachable from
〈ε,M, . . . (ti, ABidle,mi) . . .〉, and
〈H ′,M ′, (t1, l′1,m′1) . . . (tn, l

′
n,m

′
n)〉 is a type EF

configuration which is reachable from
〈ε,M, . . . (ti, EFidle,mi) . . .〉.

2. H = H ′,M(Top) = M ′(Top).
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A verification example

3. for each i, (ti, li,mi) and (ti, l
′
i,m

′
i) satisfy one of the

following conditions

idle: both in idle states;
push: both in pre-linearization push states or both in

post-linearization push states,
mi(n) = m′i(n),mi(v) = m′i(v);

pre-pop: both in pre-linearization pop states;
post-pop: both in post-linearization pop states,

mi(ss) = m′i(n), mi(v) = m′i(v).

For this R, we can prove that

1 R is a weak bisimulation,
2 and R ⊆ I(R).
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Conclusion and Related Works

1. Introduced weak bisimilarity with explicit divergence
≈∆, characterized by inductive weak bisimulation
which supports verification.

2. As an application example, used inductive weak
bisimulation to verify the correctness of HSY collision
stack, which shows that the proposed method is not
over restrictive.

3. The method can be adapted for branching bisimilarity
with explicit divergence ≈∆

b and divergence preserving
weak bisimilarity ≈⇑.
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Conclusion and Related Works

1. van Glabbeek and Weijland’s work on branching
bisimilarity with explicit divergence.

2. Namjoshi’s work on well-founded stutter equivalence.

3. Gotsman and Yang, Liang et al.’s work on
linearizability plus progress conditions.

4. Xiaoxiao Yang et al.’s work on using branching
bisimilarity with explicit divergence to verify
correctness and progress of concurrent data structures.
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