

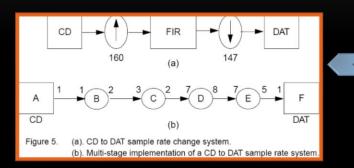
Chinese Academy of Sciences

Pareto Optimal Scheduling for Synchronous Data Flow Graphs on Heterogeneous Multiprocessor

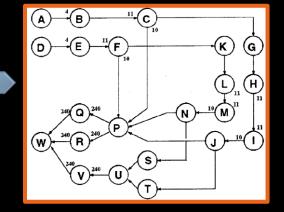
朱雪阳 http://lcs.ios.ac.cn/~zxy/ 2016-12-11, 湖南长沙

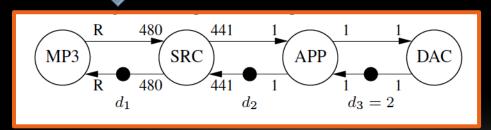
Yu-Lei Gu, Xue-Yang Zhu, Guangquan Zhang, Yifan He. Pareto Optimal Scheduling for Synchronous Data Flow Graphs on Heterogeneous Multiprocessor. In Proc. Of the 21st International Conference on Engineering of Complex Computer Systems (ICECCS 2016). Dubai, UAE, 6-8 Nov., 2016.

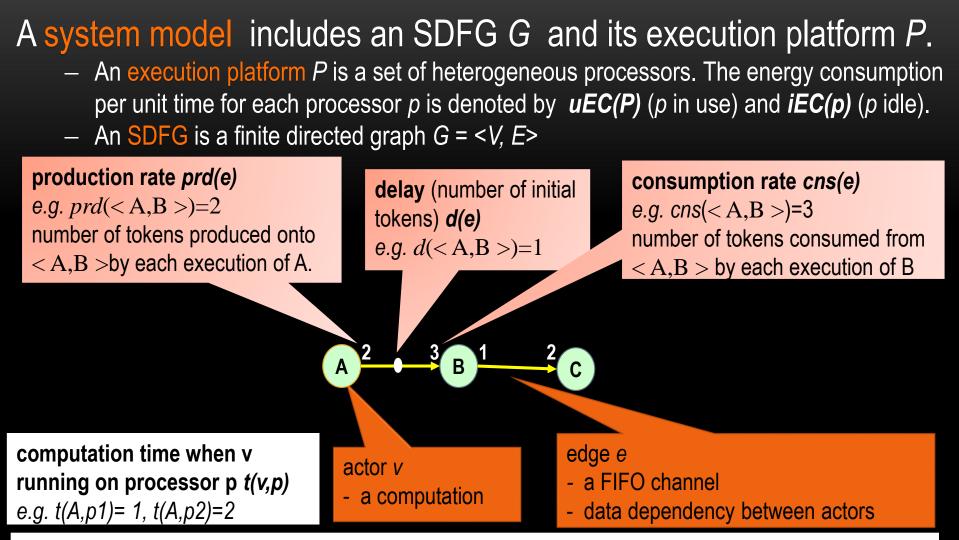
Setting the Context


- Model Description and Problem Formulation
- Basic Ideas of Our Methods
- Static Optimal Scheduling and Mapping
- Experimental Evaluation
- Conclusions and Future Work

- Synchronous dataflow graphs (SDFG) are widely used for modeling data-driven applications
 - digital signal processing (DSP) algorithms
 - streaming media programs

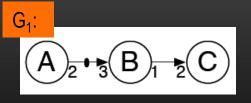

An MP3 playback

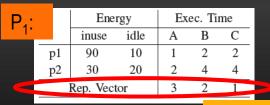

[Wiggers, et al. 2007]


A sample rate converter model--compact disk (CD) to digital audio tape (DAT)[Murthy, et al.1997]

A satellite receiver [Ritz, et al. 1995]

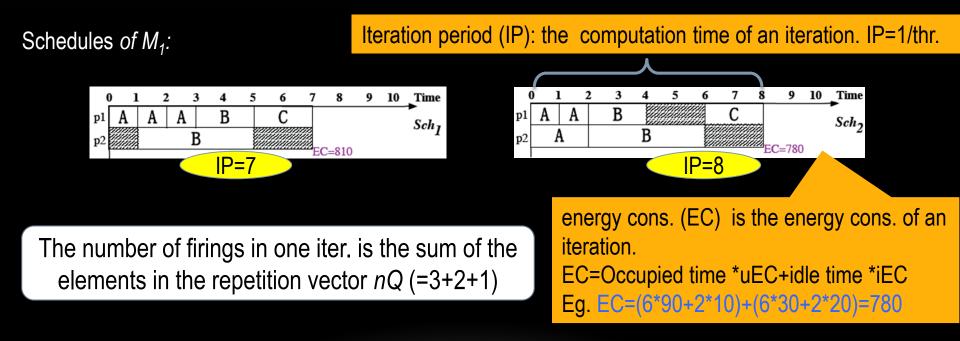
Model Description



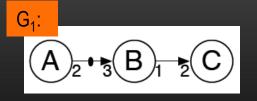

Multi-rate, e.g. $prd(\langle A,B \rangle)=2$, $cns(\langle A,B \rangle)=3$

Different number of firings of each actor in one iteration of execution, e.g. 3A,2B,1C in an iteration.

Model Description


System Model $M_1 = (G_1, P_1)$:

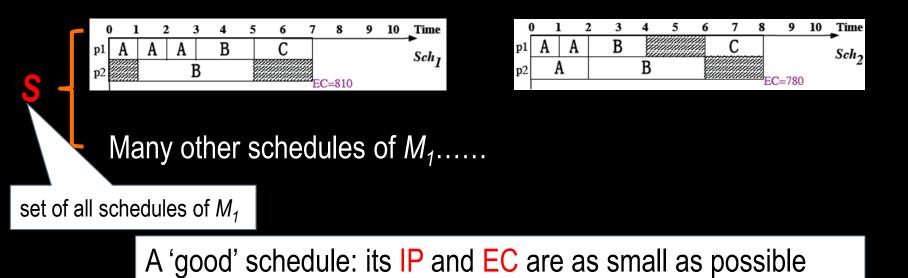
One **iteration** of G_1 : three firings of A, two firings of B and one firing of C, respectively. repetition vector


A static schedule arranges actors of an SDFG to be executed repeatedly (periodically). ✓ time arrangement and processor allocation

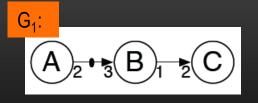
In a schedule, an actor can be arranged to fire only when there are enough tokens on its incoming edges.

E.g., in Sch_1 : the first firing of B can only fire when the first firing of A is finished (therefore there are 3 tokens on edge <A,B>)

System Model $M_1 = (G_1, P_1)$:

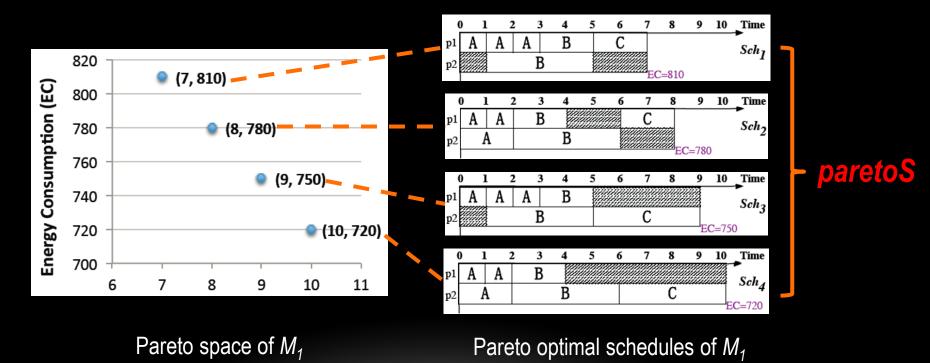


)		Ene	Exec. Time				
1.		inuse	idle	Α	В	С	
	p1	90	10	1	2	2	
	p2	30	20	2	4	4	
]	Rep. Vect	or	3	2	1	

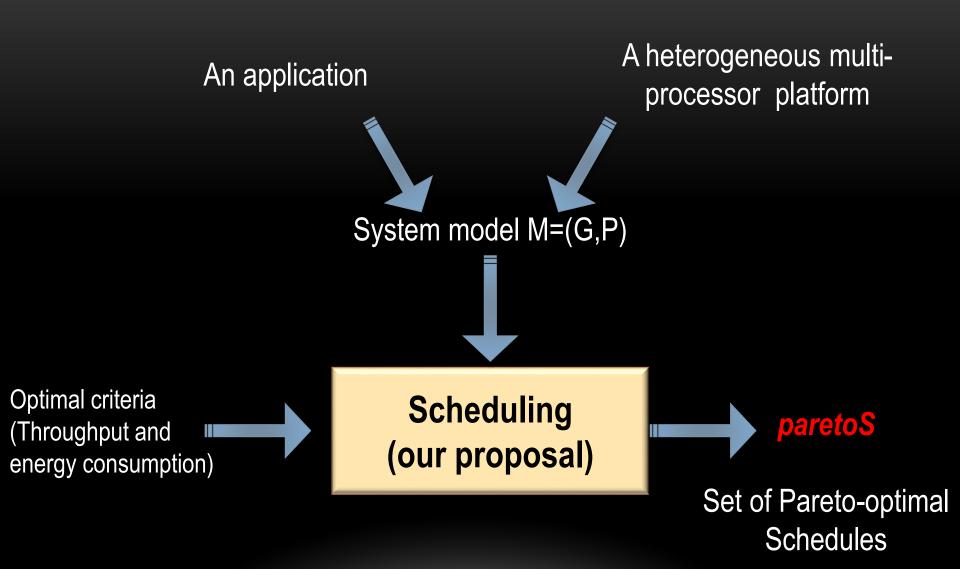

One **iteration** of G_1 : three firings of A, two firings of B and one firing of C, respectively.

A static schedule arranges actors of an SDFG to be executed repeatedly. ✓ time arrangement and processor allocation

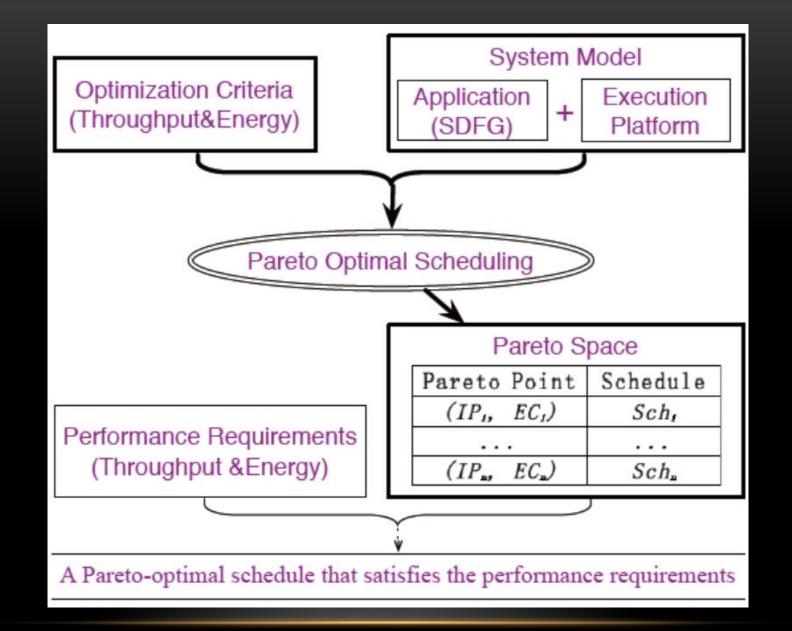
Schedules of M₁:


A Pareto point is a tuple (EC; IP). It is impossible to make one (IP or EC) better off without making the other worse off. A schedule is a Pareto optimal schedule if its (EC; IP) is a Pareto point. System Model $M_1 = (G_1, P_1)$:

י ר		Ene	Exec. Time				
1.		inuse	idle	Α	В	С	
	p1	90	10	1	2	2	
	p2	30	20	2	4	4	
]	Rep. Vect	or	3	2	1	


One **iteration** of G_1 : three firings of A, two firings of B and one firing of C, respectively.

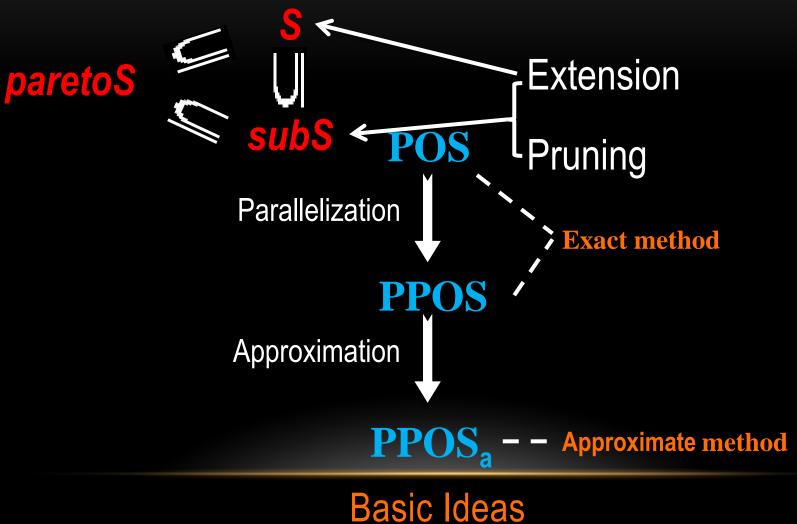
A static schedule arranges actors of an SDFG to be executed repeatedly. ✓ time arrangement and processor allocation



A Pareto point is a tuple (EC; IP). It is impossible to make one (IP or EC) better off without making the other worse off.

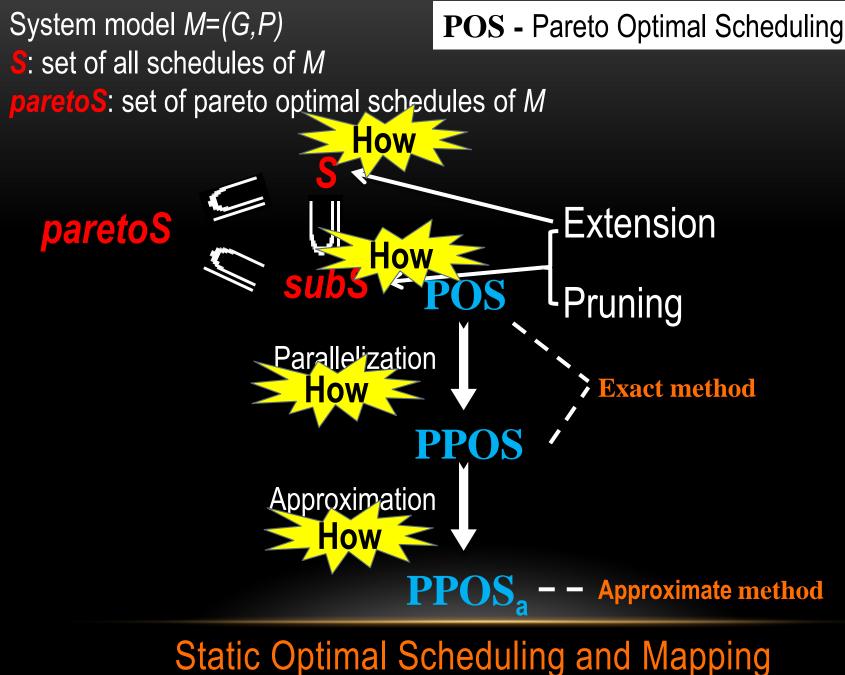
A schedule is a Pareto optimal schedule if its (EC; IP) is a Pareto point.

Problem Formulation



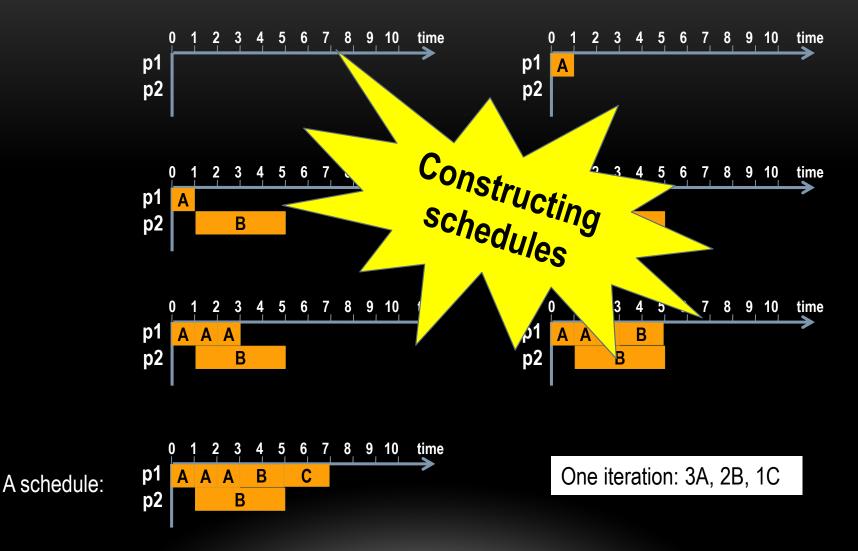
The goal of our work

- Model Description and Problem Formulation
- Basic Ideas of Our Methods
- Static Optimal Scheduling and Mapping
- Experimental Evaluation
- Conclusions and Future Work

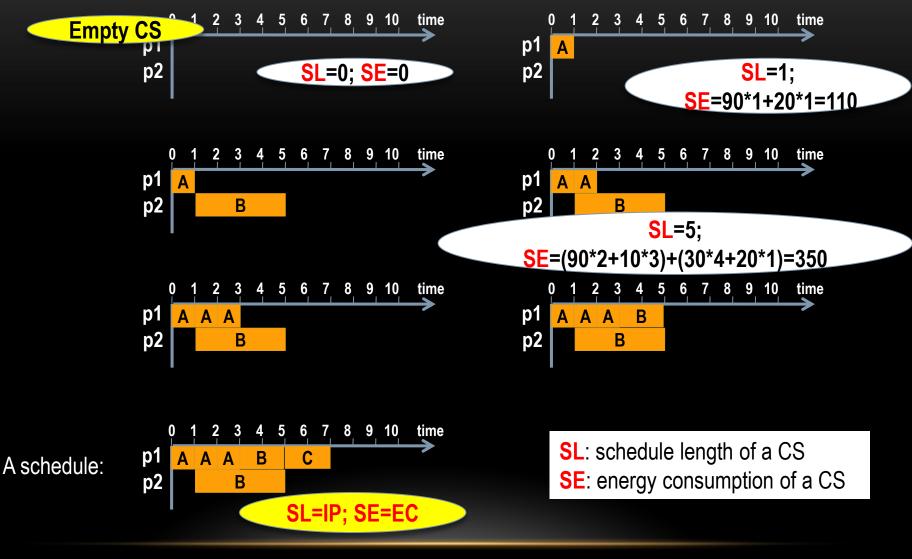


System model M=(G,P)POS - Pareto Optimal SchedulingS: set of all schedules of MparetoS: set of pareto optimal schedules of M

- Model Description and Problem Formulation
- Basic Ideas of Our Methods
- Static Optimal Scheduling and Mapping
- Experimental Evaluation
- Conclusions and Future Work

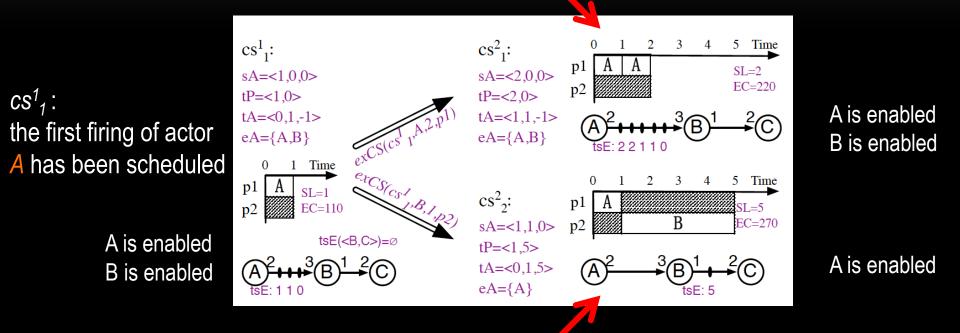


2016-12-11 SAVE

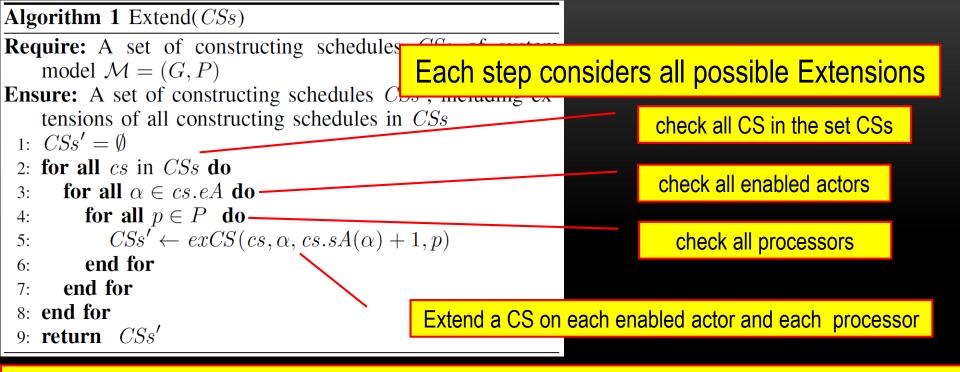

How to construct **S** with Extension?

A Constructing schedule (CS) is a partial schedule

Constructing schedules


A Constructing schedule (CS) is a partial schedule

Constructing schedules


Effect of Extension: a new firing is arranged on 'right' time point and available processor and the state of the SDFG is changed accordingly

 cs_1^2 is an Extension of cs_1^1 on the 2nd firing of actor A and processor p_1

 cs_{2}^{2} is an Extension of cs_{1}^{1} on the first firing of actor **B** and processor p_{2}

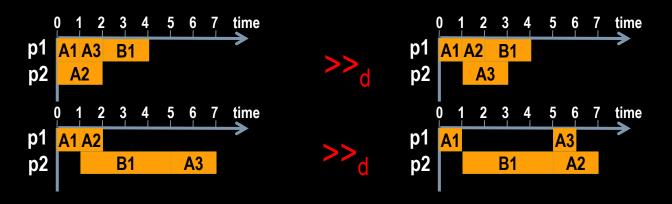
Extension

Schedules of a system model are constructed step by step, beginning with a set including an empty CS. At each step, we get a set of Extensions of current set of CSs.

$$CSs_0 \rightarrow CSs_1 \rightarrow CSs_2 \rightarrow \dots \rightarrow CSs_i \rightarrow CSs_{i+1} \rightarrow \dots \rightarrow CSs_{nQ} = S$$

CSs₀={empty CS} CSs_{i+1}=**Extend**(CSs_i), i=1~nQ

S is constructed after *nQ* steps!


Constructing Schedules with Extension

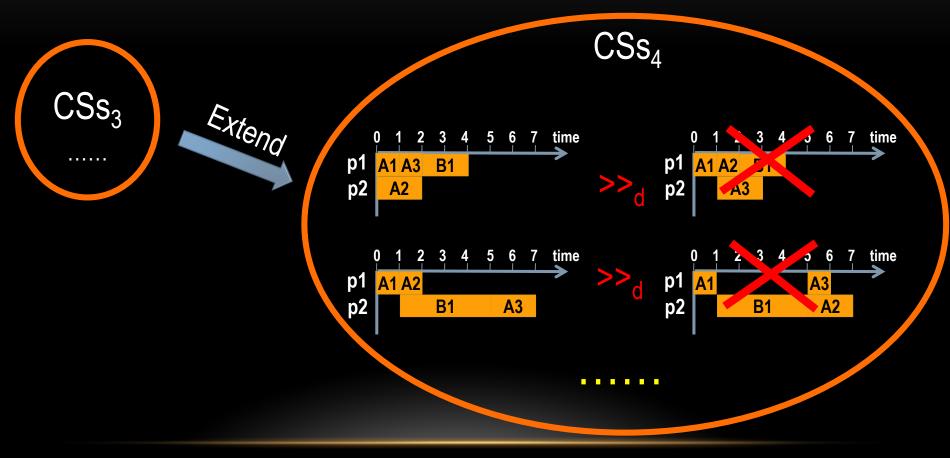
2016-12-11 SAVE

How to construct **subS** with extension and pruning (**POS**)?

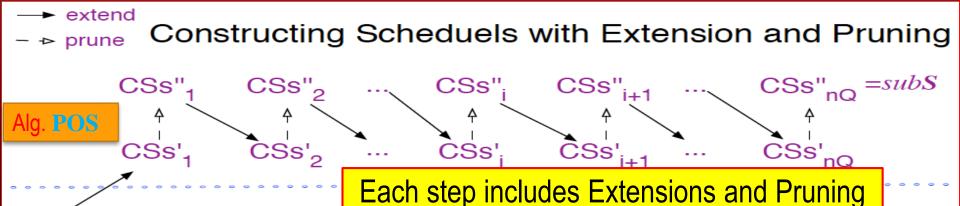
- cs_1 dominate cs_2 , denoted by $cs_1 >>_d cs_2$
 - two CSs are compared only when they have arranged the same number of firings of each actor;
 - occupied time of each processor; (the less the better)
 - finish time on each processor; (the less the better)
 - ✓ the possible start time of the next firing of each actor. (the less the better)

Set CSs is a Partial Order Set under domination relation.

Property 1 (Theorem 8). SL and SE of the dominated CS are never better than SL and SE of the dominator.


Property 2 (Theorem 9). The domination relation of two constructing schedules is preserved by Extension.

Domination Relation of CSs


Any extension of a dominated CS will be dominated by an extension of its dominator

No Pareto optimal schedule is extended by a dominated CS (in any step)

Therefore the dominated CSs can be removed safely

 $CSs_1 \rightarrow CSs_2 \rightarrow \dots \rightarrow CSs_i \rightarrow CSs_{i+1} \rightarrow \dots \rightarrow CSs_{nQ} = S$

Constructing Scheduels with Extension
subS is constructed after nQ steps!

paretoS 🦳 subS ⊆ S

Institute of Software

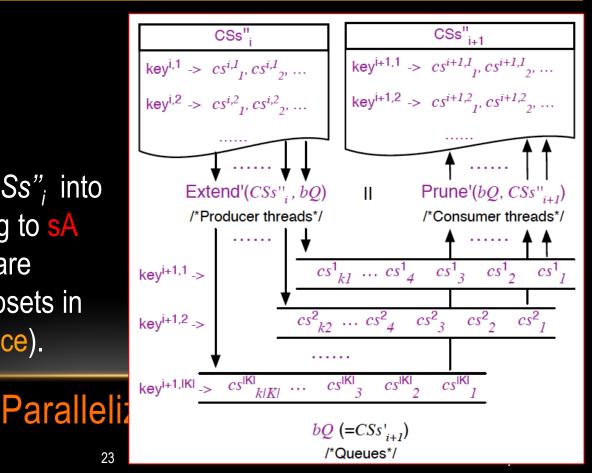
Chinese Academy of Sciences

The number of constructing schedules of M_1 at each step

With Extension only	i	1	2	3	4	5	6
	$ CS_i $	2	8	24	48	96	192
With Extension and Pruning	 $ CS_i'' $	2	7	13	14	9	13

Constructing Schedules with Extension and Pruning_x

How to parallelize the construction procedure (PPOS)?

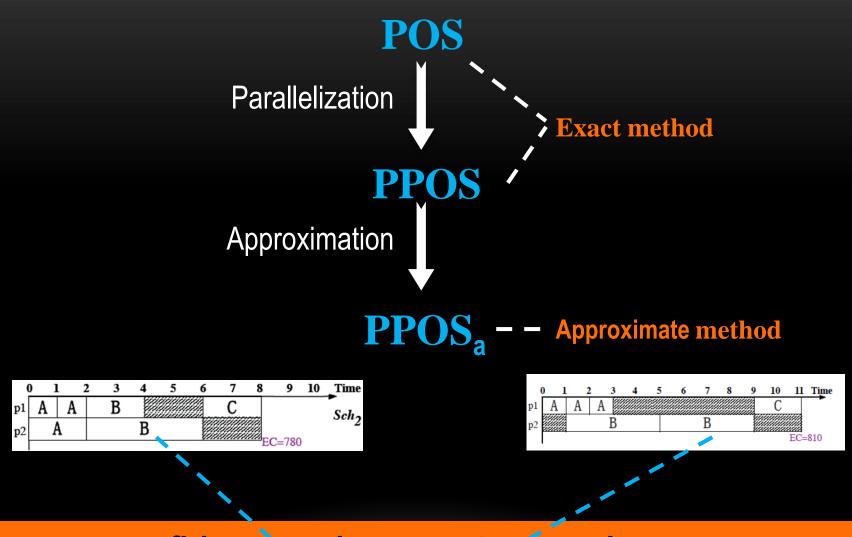

At each step of POS

- ✓ each Extension does not affect each other
- ✓ Pruning operations are possible only for those CSs, in which, for each actor, the number of the scheduled firings (sA(V)) are same.

Alg. **PPOS**

At each step

- ✓ Divide sets CSs'_i and CSs"_i into some subsets according to sA
- extension and pruning are conducted on those subsets in parallel (without data race).



How to approximate the procedure (**PPOS**)?

PPOS_a is obtained by pruning the space according to a **quasidomination** relation

 ✓ compares only the schedule length SL and energy consumption SE of two constructing schedules.

Approximation

Consider both **firing mapping** and **actor mapping** (all firings of an actor are arranged on the same processor). - fmPPOS, amPPOS; fmPPOS_a, amPPOS_a

2016-12-11 SAVE

Chinese Academy of Sciences

- Model Description and Problem Formulation
- Basic Ideas of Our Methods
- Static Optimal Scheduling and Mapping
- Experimental Evaluation
- Conclusions and Future Work

						Energy			Exec. Time			
					p1	inuse 90	idle 10	FD 0	VLD 1	IDCT 1	MC 1	RC 1
		stem model		\checkmark \checkmark	p1 p2	90 30	20	0	2	2	2	2
		Sce.	x	FD	VLD	Rep. Vect IDCT	or MC	RC	nQ			
	Number of	processors		MC	P5	5	FD 1	5	5	1	1	13
	Tumber of				P10 P30	10 30	1 1	10 30	10 30	1 1	1 1	23 63
	Results	for Firing Mapping										
	Pare	to Space (EC,IP)										
#Pro	P5	P10	P30			Νι	umbe	er of	firing	s in a	n ite	r.
2	(990,9)(960,10)	(1790,15)(1760,16)	(5020,42)(4990,43	3),								
			(4960,44)	Models v	vith c	liffer	ent r	าด				
4	(1020,5)	(1820,9)	(5080,22)(5020,23									
	Compose to a			مارايه	0. 100							
	MC [19	/fmPPOS/inirrosa		Compare to m				U		· · ·		
2	0.1/0.1/0.1	0.2/0.2/0.2	6.4/1.2/1.0	evaluate the e	exact	ness	s of t	ne p	ropos	sed m	etho	ds
4	13.5/0.3/0.1	19m/11.4/0.2	N/N/0.7				1					
	Results	for Actor Mapping		Expe	erim	ier	ital					
	Pare	to Space (EC,IP)		resu	te							
2	(1230,11)(1020,12)	(2330,21)1820,22)	(6730,61)(5020,62		lo lo							
2	(990,13)(960,14)	((1790,23)(1760,24)	(4990,63),(4960,64	4)								
4	(1380,7)(1320,12)	(2480,12)(2420,22)	(6880,32)(6820,62	2)								
	(1080,13)	(1880,23)	(5080,63)									
	Exe	ecution Time (s)										
	aml	PPOS/amPPOS _a										
2	0.1/0.1	0.1/0.6	1.4/0.4	with diff	ere	nt r	bar	am	eter	S		
4	0.1/0.1	0.2/0.4	0.4/0.4							,	Kue-Yai e of So	
N - T	ïmeout.								Chinese	Academ	y of Sc	iences

For all scenarios and parameters of MPEG-4 decoder that MC method can finish, our methods return exact Pareto spaces as MC does.

- Our methods outperform MC method more when the models grow larger.

	Results	for Firing Mapping									
Pareto Space (EC,IP)											
#Pro	<i>EPro</i> P5 P10 P30										
	(990,9)(960,10)	(1790,15)(1760,16)	(5020,42)(4990,43),								
2			(4960,44)								
4	(1020,5)	(1820,9)	(5080.22)(5020,23)								
Execution Time (s)											
	MC [19]/fmPPOS/fmPPOSa									
2	0.1/0.1/0.1	0.2/0.2/0.2	6.4/1.2/1.0								
4	13.5/0.3/0.1	19m/11.4/0.2	N/N/0 7								
	Results	for Actor Mapping									
	Pare	to Space (EC,IP)									
2	(1230,11)(1020,12)	(2330,21)1820,22)	(6730,61)(5020,62)								
2	(990,13)(960,14)	((1790,23)(1760,24)	(4990,63),(4960,64)								
4	(1380,7)(1320,12)	(2480,12)(2420,22)	(6880,32)(6820,62)								
4	(1080,13)	(1880,23)	(5080,63)								
I	Exe	ecution Time (s)									
	aml	PPOS/amPPOS _a									
2	0.1/0.1	0.1/0.6	1.4/0.4								
4	0.1/0.1	0.2/0.4	0.4/0.4								
N - T	imeout	-									

Experimental results

with different parameters

Xue-Yang Zhu Institute of Software Chinese Academy of Sciences

N - Timeout.

The number of actors in an SDFG (nA) and the sum of the elements in the repetition vector (nQ) have significant impact on the performance of various methods.

We generate six groups of SDFGs with different values of nA and nQ. Each group includes 30 graphs with the same values of nA and nQ.

- E.g. a group named a5q20 includes 30 SDFGs with nA = 5 and nQ = 20

	fmPPOS	$fmPPOS_a$	NADRS	amPPOS	amPPOS _a	
	Exe. Time (AVG	/MAX/MIN)	of fmPPOSa	Exe. Time (AV	G/MAX/MIN)	The relative small cases
a5q20	0.2/1.1/0.1	0.1/0.3/0.1	1.0%	0.1/0.4/0.1	0.1/0.4/0.0	 used to evaluated the performance
a5q50	1.9/11.3/0.1	0.3/0.7/0.1	0.6%	0.4/1.4/0.1	0.5/1.7/0.1	•
a10q50	37.2/8.2m/0.3 ^b	0.7/7.3/0.1	0.8%	2.6/30.0/0.1 ^a	0.7/2.5/0.1	of exact methods and measure the
a10q100	4.6m/23.7m/1.1 ^b	7.7/2.6m/0.2	0.5%	12.7/3.2m/0.3 ^a	1.7/16.9/0.2	accuracy of the appr. methods.

^a Timeout on 1 case.

^b Timeout on 7 cases.

		#Pro	<i>o</i> = 4	#Pr	<i>o</i> = 8
		$fmPPOS_a$	$amPPOS_a$	$fmPPOS_a$	$amPPOS_a$
The large cases		AVG/MAX/MIN	AVG/MAX/MIN	AVG/MAX/MIN	AVG/MAX/MIN
 used to evaluate the performance of 	a10q50	0.7/5.5/0.1	0.8/3.4/0.1	0.7/4.3/0.1	0.7/2.3/0.1
· · · · · · · · · · · · · · · · · · ·	a10q100	5.6/1.8m/0.2	1.7/11.5/0.4	5.3/1.4m/0.1	1.5/12.5/0.4
proposed approximate methods.	a20q100	44.2/14.6m/0.5 ^a	1.1m/29.2m/0.4	1.5m/29.4m/0.5	12.2/2.2m/0.4 ^a
	a10q1000	4.2m/21.4m/19.9 ^b	40.6/4.6m/0.9 ^a	3.1m/15m/4.2 ^b	70.8/12.2m/1.5 ^a
	^a Timeout (on 1 to 2 cases			

^a Timeout on 1 to 2 cases.

^b Timeout on 9 to 13 cases.

They run on a 2.4GHz server with 160 cores, 32MB Cache and 256GB RAM. At each step, we allocate 90 percent of cores to pruning threads (Consumers) and 10 percent to extension threads (Producers).

- Model Description and Problem Formulation
- Basic Ideas of Our Methods
- Static Optimal Scheduling and Mapping
- Experimental Evaluation
- Conclusions and Future Work

- A Parallelized Pareto Optimal Scheduling method (PPOS) for scheduling SDFGs on heterogeneous multiprocessor platforms.
 - ✓ The optimization criteria are throughput and energy consumption
 - ✓ PPOS is an exact method that can find all exact Pareto optimal schedules
 - with firing mapping or with actor mapping
- An approximation variant of PPOS, PPOSa, has been presented to deal with larger system models.
- The exactness and efficiency of the exact methods are further confirmed by the experimental results. The approximate methods return results close to the exact ones.

 The design of complex embedded systems usually needs to take into account various resource constraints. Besides processors and energy constraints, we will extend our methods to deal with more resource constraints in the future work.

Thanks !

